共计 6630 个字符,预计需要花费 17 分钟才能阅读完成。
本文首发于 2020-09-03 21:22:14
《ClickHouse 和他的敌人们》系列文章转载自圈内好友 BohuTANG 的博客,原文链接:
https://bohutang.me/2020/08/3…
以下为注释。
在 ClickHouse 里,物化视图 (Materialized View) 能够说是一个神奇且弱小的货色,用处标新立异。
本文从底层机制进行剖析,看看 ClickHouse 的 Materalized View 是怎么工作的,以不便更好的应用它。
什么是物化视图
对大部分人来说,物化视图这个概念会比拟形象,物化?视图?。。。
为了更好的了解它,咱们先看一个场景。
假如你是 *hub
一个“幸福”的小程序员,某天产品经理有个需要:实时统计每小时视频下载量。
用户下载明细表:
clickhouse> SELECT * FROM download LIMIT 10;
+---------------------+--------+--------+
| when | userid | bytes |
+---------------------+--------+--------+
| 2020-08-31 18:22:06 | 19 | 530314 |
| 2020-08-31 18:22:06 | 19 | 872957 |
| 2020-08-31 18:22:06 | 19 | 107047 |
| 2020-08-31 18:22:07 | 19 | 214876 |
| 2020-08-31 18:22:07 | 19 | 820943 |
| 2020-08-31 18:22:07 | 19 | 693959 |
| 2020-08-31 18:22:08 | 19 | 882151 |
| 2020-08-31 18:22:08 | 19 | 644223 |
| 2020-08-31 18:22:08 | 19 | 199800 |
| 2020-08-31 18:22:09 | 19 | 511439 |
... ....
计算每小时下载量:
clickhouse> SELECT toStartOfHour(when) AS hour, userid, count() as downloads, sum(bytes) AS bytes FROM download GROUP BY userid, hour ORDER BY userid, hour;
+---------------------+--------+-----------+------------+
| hour | userid | downloads | bytes |
+---------------------+--------+-----------+------------+
| 2020-08-31 18:00:00 | 19 | 6822 | 3378623036 |
| 2020-08-31 19:00:00 | 19 | 10800 | 5424173178 |
| 2020-08-31 20:00:00 | 19 | 10800 | 5418656068 |
| 2020-08-31 21:00:00 | 19 | 10800 | 5404309443 |
| 2020-08-31 22:00:00 | 19 | 10800 | 5354077456 |
| 2020-08-31 23:00:00 | 19 | 10800 | 5390852563 |
| 2020-09-01 00:00:00 | 19 | 10800 | 5369839540 |
| 2020-09-01 01:00:00 | 19 | 10800 | 5384161012 |
| 2020-09-01 02:00:00 | 19 | 10800 | 5404581759 |
| 2020-09-01 03:00:00 | 19 | 6778 | 3399557322 |
+---------------------+--------+-----------+------------+
10 rows in set (0.13 sec)
很容易嘛,不过有个问题:每次都要以 download
表为根底数据进行计算,*hub
数据量太大,无法忍受。
想到一个方法:如果对 download
进行预聚合,把后果保留到一个新表 download_hour_mv
,并随着 download
增量实时更新,每次去查问download_hour_mv
不就能够了。
这个新表能够看做是一个物化视图,它在 ClickHouse 是一个一般表。
创立物化视图
clickhouse> CREATE MATERIALIZED VIEW download_hour_mv
ENGINE = SummingMergeTree
PARTITION BY toYYYYMM(hour) ORDER BY (userid, hour)
AS SELECT
toStartOfHour(when) AS hour,
userid,
count() as downloads,
sum(bytes) AS bytes
FROM download WHERE when >= toDateTime('2020-09-01 04:00:00')
GROUP BY userid, hour
这个语句次要做了:
- 创立一个引擎为
SummingMergeTree
的物化视图download_hour_mv
- 物化视图的数据来源于
download
表,并依据select
语句中的表达式进行相应“物化”操作 - 选取一个将来工夫 (以后工夫是
2020-08-31 18:00:00
) 作为开始点WHERE when >= toDateTime('2020-09-01 04:00:00')
,示意在2020-09-01 04:00:00
之后的数据才会被同步到download_hour_mv
这样,目前 download_hour_mv
是一个空表:
clickhouse> SELECT * FROM download_hour_mv ORDER BY userid, hour;
Empty set (0.02 sec)
留神:官网有 POPULATE 关键字,然而不倡议应用,因为视图创立期间 download
如果有写入数据会失落,这也是咱们加一个 WHERE
作为数据同步点的起因。
那么,咱们如何让源表数据能够一致性的同步到 download_hour_mv
呢?
物化全量数据
在 2020-09-01 04:00:00
之后,咱们能够通过一个带 WHERE
快照的INSERT INTO SELECT...
对 download
历史数据进行物化:
clickhouse> INSERT INTO download_hour_mv
SELECT
toStartOfHour(when) AS hour,
userid,
count() as downloads,
sum(bytes) AS bytes
FROM download WHERE when < toDateTime('2020-09-01 04:00:00')
GROUP BY userid, hour
查问物化视图:
clickhouse> SELECT * FROM download_hour_mv ORDER BY hour, userid, downloads DESC;
+---------------------+--------+-----------+------------+
| hour | userid | downloads | bytes |
+---------------------+--------+-----------+------------+
| 2020-08-31 18:00:00 | 19 | 6822 | 3378623036 |
| 2020-08-31 19:00:00 | 19 | 10800 | 5424173178 |
| 2020-08-31 20:00:00 | 19 | 10800 | 5418656068 |
| 2020-08-31 21:00:00 | 19 | 10800 | 5404309443 |
| 2020-08-31 22:00:00 | 19 | 10800 | 5354077456 |
| 2020-08-31 23:00:00 | 19 | 10800 | 5390852563 |
| 2020-09-01 00:00:00 | 19 | 10800 | 5369839540 |
| 2020-09-01 01:00:00 | 19 | 10800 | 5384161012 |
| 2020-09-01 02:00:00 | 19 | 10800 | 5404581759 |
| 2020-09-01 03:00:00 | 19 | 6778 | 3399557322 |
+---------------------+--------+-----------+------------+
10 rows in set (0.05 sec)
能够看到数据曾经“物化”到 download_hour_mv
。
物化增量数据
写一些数据到 download
表:
clickhouse> INSERT INTO download
SELECT
toDateTime('2020-09-01 04:00:00') + number*(1/3) as when,
19,
rand() % 1000000
FROM system.numbers
LIMIT 10;
查问物化视图 download_hour_mv
:
clickhouse> SELECT * FROM download_hour_mv ORDER BY hour, userid, downloads;
+---------------------+--------+-----------+------------+
| hour | userid | downloads | bytes |
+---------------------+--------+-----------+------------+
| 2020-08-31 18:00:00 | 19 | 6822 | 3378623036 |
| 2020-08-31 19:00:00 | 19 | 10800 | 5424173178 |
| 2020-08-31 20:00:00 | 19 | 10800 | 5418656068 |
| 2020-08-31 21:00:00 | 19 | 10800 | 5404309443 |
| 2020-08-31 22:00:00 | 19 | 10800 | 5354077456 |
| 2020-08-31 23:00:00 | 19 | 10800 | 5390852563 |
| 2020-09-01 00:00:00 | 19 | 10800 | 5369839540 |
| 2020-09-01 01:00:00 | 19 | 10800 | 5384161012 |
| 2020-09-01 02:00:00 | 19 | 10800 | 5404581759 |
| 2020-09-01 03:00:00 | 19 | 6778 | 3399557322 |
| 2020-09-01 04:00:00 | 19 | 10 | 5732600 |
+---------------------+--------+-----------+------------+
11 rows in set (0.00 sec)
能够看到最初一条数据就是咱们增量的一个物化聚合,曾经实时同步,这是如何做到的呢?
物化视图原理
ClickHouse 的物化视图原理并不简单,在 download
表有新的数据写入时,如果检测到有物化视图跟它关联,会针对这批写入的数据进行物化操作。
比方下面新增数据是通过以下 SQL 生成的:
clickhouse> SELECT
-> toDateTime('2020-09-01 04:00:00') + number*(1/3) as when,
-> 19,
-> rand() % 1000000
-> FROM system.numbers
-> LIMIT 10;
+---------------------+------+-------------------------+
| when | 19 | modulo(rand(), 1000000) |
+---------------------+------+-------------------------+
| 2020-09-01 04:00:00 | 19 | 870495 |
| 2020-09-01 04:00:00 | 19 | 322270 |
| 2020-09-01 04:00:00 | 19 | 983422 |
| 2020-09-01 04:00:01 | 19 | 759708 |
| 2020-09-01 04:00:01 | 19 | 975636 |
| 2020-09-01 04:00:01 | 19 | 365507 |
| 2020-09-01 04:00:02 | 19 | 865569 |
| 2020-09-01 04:00:02 | 19 | 975742 |
| 2020-09-01 04:00:02 | 19 | 85827 |
| 2020-09-01 04:00:03 | 19 | 992779 |
+---------------------+------+-------------------------+
10 rows in set (0.02 sec)
物化视图执行的语句相似:
INSERT INTO download_hour_mv
SELECT
toStartOfHour(when) AS hour,
userid,
count() as downloads,
sum(bytes) AS bytes
FROM [新增的 10 条数据] WHERE when >= toDateTime('2020-09-01 04:00:00')
GROUP BY userid, hour
代码导航:
-
增加视图 OutputStream,InterpreterInsertQuery.cpp
if (table->noPushingToViews() && !no_destination) out = table->write(query_ptr, metadata_snapshot, context); else out = std::make_shared<PushingToViewsBlockOutputStream>(table, metadata_snapshot, context, query_ptr, no_destination);
-
结构 Insert,PushingToViewsBlockOutputStream.cpp
ASTPtr insert_query_ptr(insert.release()); InterpreterInsertQuery interpreter(insert_query_ptr, *insert_context); BlockIO io = interpreter.execute(); out = io.out;
- 物化新增数据:PushingToViewsBlockOutputStream.cpp
Context local_context = *select_context;
local_context.addViewSource(
StorageValues::create(storage->getStorageID(), metadata_snapshot->getColumns(), block, storage->getVirtuals()));
select.emplace(view.query, local_context, SelectQueryOptions());
in = std::make_shared<MaterializingBlockInputStream>(select->execute().getInputStream()
总结
物化视图的用处较多。
比方能够解决表索引问题,咱们能够用物化视图创立另外一种物理序,来满足某些条件下的查问问题。
还有就是通过物化视图的实时同步数据能力,咱们能够做到更加灵便的表构造变更。
更弱小的中央是它能够借助 MergeTree 家族引擎(SummingMergeTree、Aggregatingmergetree 等),失去一个实时的预聚合,满足疾速查问。
原理是把增量的数据依据 AS SELECT ...
对其进行解决并写入到物化视图表,物化视图是一种一般表,能够间接读取和写入。
欢送关注我的微信公众号【数据库内核】:分享支流开源数据库和存储引擎相干技术。
题目 | 网址 |
---|---|
GitHub | https://dbkernel.github.io |
知乎 | https://www.zhihu.com/people/… |
思否(SegmentFault) | https://segmentfault.com/u/db… |
掘金 | https://juejin.im/user/5e9d3e… |
开源中国(oschina) | https://my.oschina.net/dbkernel |
博客园(cnblogs) | https://www.cnblogs.com/dbkernel |