BlockCanary源码解析
在解说BlockCanary源码之前,咱们还是须要将一些前置的知识点。本文不讲Handler的原理了,不太懂的同学本人去百度看一下吧。
什么是卡顿
在解说卡顿问题之前,咱们须要讲一下帧率这个概念。帧率是以帧称为单位的位图图像间断呈现在显示器上的频率。我将一个例子,电影播放。电影其实就是很多张照片(帧)的一个汇合,那为什么看起来是一个间断的过程呢?因为电影每一秒呈现过的图片不止一张。实际上电影个别一秒呈现的图片张数会在20-30张。假如电影一秒呈现了24张图片,那么这个电影的帧率就是24。帧率就是一秒中,呈现了多少帧。
晓得了什么是帧率,那么问题来了,为什么会呈现卡顿呢?卡顿在咱们的视觉下面的体现就是本来是晦涩的动画画面,当初变的不晦涩了。咱们下面讲过,动画其实是由很多图片形成。如果在一个24帧的电影中,忽然有一秒钟,在这一秒钟呈现了掉帧。也就是本来0…23的图片变成了 0…10…12…23.两头的某一帧没有渲染进去,那么这个在咱们视觉上就会呈现不晦涩的景象。也就是卡顿的景象。下面就是电影上呈现卡顿的景象。那么在咱们android零碎上呢?
Android渲染机制
在高刷手机没有呈现之前,咱们手机屏幕的帧率是60。就是意味着1秒钟会有60个画面呈现。那么也就是16ms就要有一个画面渲染。**Android零碎每隔16ms收回VSYNC信号,触发对UI进行渲染, 如果每次渲染都胜利,这样就可能达到晦涩的画面所须要的60帧,为了可能实现60fps,这意味着程序的大多数操作都必须在16ms内实现。如果超过了16ms那么可能就呈现丢帧的状况。**如果掉帧的频率很高,也就是导致卡顿的状况。
BlockCanary源码解析
那么在android中,BlockCanary
是怎么帮忙咱们去做卡顿检测的呢。明天咱们就来解说一下BlockCanary
检测卡顿的原理。
个别咱们都通过以下的代码形式去开启咱们的卡顿检测。
public class DemoApplication extends Application {
@Override
public void onCreate() {
// ...
// Do it on main process
BlockCanary.install(this, new AppBlockCanaryContext()).start();
}
}
这段代码次要有两局部,一部分是install,一部分是start。咱们先看install局部
install阶段
BlockCanary#install()
public static BlockCanary install(Context context, BlockCanaryContext blockCanaryContext) {
//BlockCanaryContext.init会将保留利用的applicationContext和用户设置的配置参数
BlockCanaryContext.init(context, blockCanaryContext);
//etEnabled将依据用户的告诉栏音讯配置开启
setEnabled(context, DisplayActivity.class, BlockCanaryContext.get().displayNotification());
return get();
}
BlockCanary#get()
//应用单例创立了一个BlockCanary对象
public static BlockCanary get() {
if (sInstance == null) {
synchronized (BlockCanary.class) {
if (sInstance == null) {
sInstance = new BlockCanary();
}
}
}
return sInstance;
}
BlockCanary()
private BlockCanary() {
//初始化blockCanaryInternals调度类
BlockCanaryInternals.setContext(BlockCanaryContext.get());
mBlockCanaryCore = BlockCanaryInternals.getInstance();
//为BlockCanaryInternals增加拦截器(责任链)BlockCanaryContext对BlockInterceptor是空实现
mBlockCanaryCore.addBlockInterceptor(BlockCanaryContext.get());
if (!BlockCanaryContext.get().displayNotification()) {
return;
}
//DisplayService只在开启告诉栏音讯的时候增加,当卡顿产生时将通过DisplayService发动告诉栏音讯
mBlockCanaryCore.addBlockInterceptor(new DisplayService());
}
BlockCanaryInternals.getInstance()
static BlockCanaryInternals getInstance() {
if (sInstance == null) {
synchronized (BlockCanaryInternals.class) {
if (sInstance == null) {
sInstance = new BlockCanaryInternals();
}
}
}
return sInstance;
}
BlockCanaryInternals
public BlockCanaryInternals() {
//初始化栈采集器
stackSampler = new StackSampler(
Looper.getMainLooper().getThread(),
sContext.provideDumpInterval());
//初始化cpu采集器
cpuSampler = new CpuSampler(sContext.provideDumpInterval());
//初始化LooperMonitor,并实现了onBlockEvent的回调,该回调会在触发阈值后被调用,这外面比拟重要
setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() {
@Override
public void onBlockEvent(long realTimeStart, long realTimeEnd,
long threadTimeStart, long threadTimeEnd) {
ArrayList<String> threadStackEntries = stackSampler
.getThreadStackEntries(realTimeStart, realTimeEnd);
if (!threadStackEntries.isEmpty()) {
BlockInfo blockInfo = BlockInfo.newInstance()
.setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd)
.setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd))
.setRecentCpuRate(cpuSampler.getCpuRateInfo())
.setThreadStackEntries(threadStackEntries)
.flushString();
LogWriter.save(blockInfo.toString());
if (mInterceptorChain.size() != 0) {
for (BlockInterceptor interceptor : mInterceptorChain) {
interceptor.onBlock(getContext().provideContext(), blockInfo);
}
}
}
}
}, getContext().provideBlockThreshold(), getContext().stopWhenDebugging()));
LogWriter.cleanObsolete();
}
当install进行初始化实现后,接着会调用start()办法,实现如下:
start阶段
BlockCanary#start()
//BlockCanary#start()
public void start() {
if (!mMonitorStarted) {
mMonitorStarted = true;
//把mBlockCanaryCore中的monitor设置MainLooper中进行监听
Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor);
}
}
这外面的实现也比较简单,就是获取到主线程Looper而后将上一步创立的LooperMonitor设置到主线程Looper外面的MessageLogging。
到这里而后呢?卧槽,没了一开始看这里的源码的时候我也是很懵逼的。而后我就去github上看了,而后呢,我看到了这么一张图。
通过这张图,我能够晓得,真正开始检测的不是start(),而是Looper外面loop()函数
Looper#loop
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
if (me.mInLoop) {
Slog.w(TAG, "Loop again would have the queued messages be executed"
+ " before this one completed.");
}
me.mInLoop = true;
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
loop()外面的代码很长,咱们解说blockCanary的时候不须要过分关注其余局部,还记得咱们start做的事件吗,咱们去设置了setMessageLogging
。所以先看看setMessageLogging
办法
Looper#setMessageLogging
public void setMessageLogging(@Nullable Printer printer) {
mLogging = printer;
}
其实就是将创立的LooperMonitor
赋值给mLogging,那么咱们只须要关注mLogging在loop()中的代码就好了。咱们发现就是调用了两次println。一个是在msg.target.dispatchMessage(msg)
之前,一个是在msg.target.dispatchMessage(msg)
之后。也就是说这两次调用,一次是解决信号之前,一个是解决信号之后。那么通过实现LooperMonitor外面的println办法,咱们就能够得出一些时间差。所以,接下来咱们要看的是LooperMonitor外面的println办法
MainLooper#println()
//MainLooper#println()
@Override
public void println(String x) {
//如果再debug模式,不执行监听
if (mStopWhenDebugging && Debug.isDebuggerConnected()) {
return;
}
if (!mPrintingStarted) { //dispatchMesage前执行的println
//记录开始工夫
mStartTimestamp = System.currentTimeMillis();
mStartThreadTimestamp = SystemClock.currentThreadTimeMillis();
mPrintingStarted = true;
//开始采集栈及cpu信息
startDump();
} else { //dispatchMesage后执行的println
//获取完结工夫
final long endTime = System.currentTimeMillis();
mPrintingStarted = false;
//判断耗时是否超过阈值
if (isBlock(endTime)) {
notifyBlockEvent(endTime);
}
stopDump();
}
}
//判断是否超过阈值
private boolean isBlock(long endTime) {
return endTime - mStartTimestamp > mBlockThresholdMillis;//这个阈值是咱们本人设置的
}
//如果超过阈值,回调卡顿的监听,阐明卡顿了
private void notifyBlockEvent(final long endTime) {
final long startTime = mStartTimestamp;
final long startThreadTime = mStartThreadTimestamp;
final long endThreadTime = SystemClock.currentThreadTimeMillis();
HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() {
@Override
public void run() {
mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime);
}
});
}
其实这里卡顿检测的源码也还是比较简单的,它的原理就是通过从新实现looper外面的logging,而后通过println函数去判断有没有呈现卡顿。BlockCanary的流程图在下面也呈现了。所以这篇博客也就写道这里吧。心愿对大家,对于卡顿的了解有肯定的帮忙。
发表回复