分布式系统关注点——99%的人都能看懂的「补偿」以及最佳实践

45次阅读

共计 4581 个字符,预计需要花费 12 分钟才能阅读完成。

如果这是第二次看到我的文章,欢迎文末扫码订阅我哟~ ???? 本文长度为 4229 字,建议阅读 11 分钟。
这是本系列中既「数据一致性」后的第二章节——「高可用」的完结篇。
前面几篇中 z 哥跟你聊了聊做「高可用」的意义,以及如何做「负载均衡」和「高可用三剑客」(熔断、限流、降级,文末会附上前文连接:))。这次,我们来聊一聊在保证对外高可用的同时,憋出的“内伤”该如何通过「补偿」机制来自行消化。
一、「补偿」机制的意义?
以电商的购物场景为例:
客户端 —-> 购物车微服务 —-> 订单微服务 —-> 支付微服务。
这种调用链非常普遍。
那么为什么需要考虑补偿机制呢?
正如之前几篇文章所说,一次跨机器的通信可能会经过 DNS 服务,网卡、交换机、路由器、负载均衡等设备,这些设备都不一定是一直稳定的,在数据传输的整个过程中,只要任意一个环节出错,都会导致问题的产生。
而在分布式场景中,一个完整的业务又是由多次跨机器通信组成的,所以产生问题的概率成倍数增加。
但是,这些问题并不完全代表真正的系统无法处理请求,所以我们应当尽可能的自动消化掉这些异常。
可能你会问,之前也看到过「补偿」和「事务补偿」或者「重试」,它们之间的关系是什么?
你其实可以不用太纠结这些名字,从目的来说都是一样的。就是一旦某个操作发生了异常,如何通过内部机制将这个异常产生的「不一致」状态消除掉。

题外话:在 Z 哥看来,不管用什么方式,只要通过额外的方式解决了问题都可以理解为是「补偿」,所以「事务补偿」和「重试」都是「补偿」的子集。前者是一个逆向操作,而后者则是一个正向操作。只是从结果来看,两者的意义不同。「事务补偿」意味着“放弃”,当前操作必然会失败。

▲事务补偿
「重试」则还有处理成功的机会。这两种方式分别适用于不同的场景。
▲重试
因为「补偿」已经是一个额外流程了,既然能够走这个额外流程,说明时效性并不是第一考虑的因素,所以做补偿的核心要点是:宁可慢,不可错。
因此,不要草率的就确定了补偿的实施方案,需要谨慎的评估。虽说错误无法 100% 避免,但是抱着这样的一个心态或多或少可以减少一些错误的发生。
二、「补偿」该怎么做?
做「补偿」的主流方式就前面提到的「事务补偿」和「重试」,以下会被称作「回滚」和「重试」。
我们先来聊聊「回滚」。相比「重试」,它逻辑上更简单一些。
「回滚」
Z 哥将回滚分为 2 种模式,一种叫「显式回滚」(调用逆向接口),一种叫「隐式回滚」(无需调用逆向接口)。
最常见的就是「显式回滚」。这个方案无非就是做 2 个事情:
首先要确定失败的步骤和状态,从而确定需要回滚的范围。一个业务的流程,往往在设计之初就制定好了,所以确定回滚的范围比较容易。但这里唯一需要注意的一点就是:如果在一个业务处理中涉及到的服务并不是都提供了「回滚接口」,那么在编排服务时应该把提供「回滚接口」的服务放在前面,这样当后面的工作服务错误时还有机会「回滚」。
其次要能提供「回滚」操作使用到的业务数据。「回滚」时提供的数据越多,越有益于程序的健壮性。因为程序可以在收到「回滚」操作的时候可以做业务的检查,比如检查账户是否相等,金额是否一致等等。
由于这个中间状态的数据结构和数据大小并不固定,所以 Z 哥建议你在实现这点的时候可以将相关的数据序列化成一个 json,然后存放到一个 nosql 类型的存储中。
「隐式回滚」相对来说运用场景比较少。它意味着这个回滚动作你不需要进行额外处理,下游服务内部有类似“预占”并且“超时失效”的机制的。例如:
电商场景中,会将订单中的商品先预占库存,等待用户在 15 分钟内支付。如果没有收到用户的支付,则释放库存。

下面聊聊可以有很多玩法,也更容易陷入坑里的「重试」。

「重试」
「重试」最大的好处在于,业务系统可以不需要提供「逆向接口」,这是一个对长期开发成本特别大的利好,毕竟业务是天天在变的。所以,在可能的情况下,应该优先考虑使用「重试」。
不过,相比「回滚」来说「重试」的适用场景更少一些,所以我们第一步首先要判断,当前场景是否适合「重试」。比如:

下游系统返回「请求超时」、「被限流中」等临时状态的时候,我们可以考虑重试

而如果是返回“余额不足”、“无权限”等明确无法继续的业务性错误的时候就不需要重试了
一些中间件或者 rpc 框架中返回 Http503、404 等没有何时恢复的预期的时候,也不需要重试

如果确定要进行「重试」,我们还需要选定一个合适的「重试策略」。主流的「重试策略」主要是以下几种。
策略 1. 立即重试。有时故障是候暂时性,可能是因网络数据包冲突或硬件组件流量高峰等事件造成的。在此情况下,适合立即重试操作。不过,立即重试次数不应超过一次,如果立即重试失败,应改用其它的策略。
策略 2. 固定间隔。应用程序每次尝试的间隔时间相同。这个好理解,例如,固定每 3 秒重试操作。(以下所有示例代码中的具体的数字仅供参考。)
策略 1 和策略 2 多用于前端系统的交互式操作中。
策略 3. 增量间隔。每一次的重试间隔时间增量递增。比如,第一次 0 秒、第二次 3 秒、第三次 6 秒,9、12、15 这样。
return (retryCount – 1) * incrementInterval;
使得失败次数越多的重试请求优先级排到越后面,给新进入的重试请求让道。
策略 4. 指数间隔。每一次的重试间隔呈指数级增加。和增量间隔“殊途同归”,都是想让失败次数越多的重试请求优先级排到越后面,只不过这个方案的增长幅度更大一些。
return 2 ^ retryCount;
策略 5. 全抖动。在递增的基础上,增加随机性(可以把其中的指数增长部分替换成增量增长。)。适用于将某一时刻集中产生的大量重试请求进行压力分散的场景。
return random(0 , 2 ^ retryCount);
策略 6. 等抖动。在「指数间隔」和「全抖动」之间寻求一个中庸的方案,降低随机性的作用。适用场景和「全抖动」一样。
var baseNum = 2 ^ retryCount;return baseNum + random(0 , baseNum);
3、4、5、6 策略的表现情况大致是这样。(x 轴为重试次数)

为什么说「重试」有坑呢?
正如前面聊到的那样,出于对开发成本考虑,你在做「重试」的时候可能是复用的常规调用的接口。那么此时就不得不提一个「幂等性」问题。
如果实现「重试」选用的技术方案不能 100% 确保不会重复发起重试,那么「幂等性」问题是一个必须要考虑的问题。哪怕技术方案可以确保 100% 不会重复发起重试,出于对意外情况的考量,尽量也考虑一下「幂等性」问题。
幂等性:不管对程序发起几次重复调用,程序表现的状态(所有相关的数据变化)与调用一次的结果是一致的话,就是保证了幂等性。这意味着可以根据需要重复或重试操作,而不会导致意外的影响。对于非幂等操作,算法可能必须跟踪操作是否已经执行。

所以,一旦某个功能支持「重试」,那么整个链路上的接口都需要考虑幂等性问题,不能因为服务的多次调用而导致业务数据的累计增加或减少。
满足「幂等性」其实就是需要想办法识别重复的请求,并且将其过滤掉。思路就是:

给每个请求定义一个唯一标识。
在进行「重试」的时候判断这个请求是否已经被执行或者正在被执行,如果是则抛弃该请求。

第 1 点,我们可以使用一个全局唯一 id 生成器或者生成服务(可以扩展阅读,分布式系统中的必备良药 —— 全局唯一单据号生成)。或者简单粗暴一些,使用官方类库自带的 Guid、uuid 之类的也行。
然后通过 rpc 框架在发起调用的客户端中,对每个请求增加一个唯一标识的字段进行赋值。
第 2 点,我们可以在服务端通过 Aop 的方式切入到实际的处理逻辑代码之前和之后,一起配合做验证。
大致的代码思路如下。
【方法执行前】
if(isExistLog(requestId)){//1. 判断请求是否已被接收过。对应序号 3
var lastResult = getLastResult(); //2. 获取用于判断之前的请求是否已经处理完成。对应序号 4
if(lastResult == null){
var result = waitResult(); // 挂起等待处理完成
return result;
}
else{
return lastResult;
}
}
else{
log(requestId); //3. 记录该请求已接收
}

//do something..

【方法执行后】
logResult(requestId, result); //4. 将结果也更新一下。

如果「补偿」这个工作是通过 MQ 来进行的话,这事就可以直接在对接 MQ 所封装的 SDK 中做。在生产端赋值全局唯一标识,在消费端通过唯一标识消重。
三、「重试」的最佳实践
再聊一些 Z 哥积累的最佳实践吧(划重点:)),都是针对「重试」的,的确这也是工作中最常用的方案。
「重试」特别适合在高负载情况下被「降级」,当然也应当受到「限流」和「熔断」机制的影响。当「重试」的“矛”与「限流」和「熔断」的“盾”搭配使用,效果才是最好。
需要衡量增加补偿机制的投入产出比。一些不是很重要的问题时,应该「快速失败」而不是「重试」。
过度积极的重试策略(例如间隔太短或重试次数过多)会对下游服务造成不利影响,这点一定要注意。
一定要给「重试」制定一个终止策略。
当回滚的过程很困难或代价很大的情况下,可以接受很长的间隔及大量的重试次数,DDD 中经常被提到的「saga」模式其实也是这样的思路。不过,前提是不会因为保留或锁定稀缺资源而阻止其他操作(比如 1、2、3、4、5 几个串行操作。由于 2 一直没处理完成导致 3、4、5 没法继续进行)。
四、总结
这篇我们先聊了下做「补偿」的意义,以及做补偿的 2 个方式「回滚」和「重试」的实现思路。
然后,提醒你要注意「重试」的时候需要考虑幂等性问题,并且 z 哥也给出了一个解决思路。
最后,分享了几个 z 哥总结的针对「重试」的最佳实践。
希望对你有所帮助。

Question:你之前有哪些时候是通过自己人工来做「补偿」的经历吗?欢迎吐槽~z 哥自己就有多次熬到半夜才把“意外”造成的混乱清理干净,刻骨铭心啊????。
相关文章:

分布式系统关注点——初识「高可用」
分布式系统关注点——仅需这一篇,吃透「负载均衡」妥妥的
分布式系统关注点——「负载均衡」到底该如何实施?
分布式系统关注点——做了「负载均衡」就可以随便加机器了吗?这三招来帮你!
分布式系统关注点——99% 的人都能看懂的「熔断」以及最佳实践
分布式系统关注点——想通关「限流」?只要这一篇
分布式系统关注点——让你的系统“坚挺不倒”的最后一个大招——「降级」
分布式系统中的必备良药 —— 全局唯一单据号生成

作者:Zachary
出处:https://www.cnblogs.com/Zacha…
▶关于作者:张帆(Zachary,个人微信号:Zachary-ZF)。坚持用心打磨每一篇高质量原创。欢迎扫描下方的二维码加入哦~。定期发表原创内容:架构设计丨分布式系统丨产品丨运营丨一些思考。如果你是初级程序员,想提升但不知道如何下手。又或者做程序员多年,陷入了一些瓶颈想拓宽一下视野。欢迎关注我的公众号「跨界架构师」,回复「技术」,送你一份我长期收集和整理的思维导图。如果你是运营,面对不断变化的市场束手无策。又或者想了解主流的运营策略,以丰富自己的“仓库”。欢迎关注我的公众号「跨界架构师」,回复「运营」,送你一份我长期收集和整理的思维导图。

正文完
 0