SparkStreaming整合Flume的pull报错解决方案

22次阅读

共计 6955 个字符,预计需要花费 18 分钟才能阅读完成。

先说下版本情况:
Spark 2.4.3
Scala 2.11.12
Flume-1.6.0

Flume 配置文件:

simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel

#Describe/configure the source
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind =centos
simple-agent.sources.netcat-source.port= 44444

# Describe the sink
simple-agent.sinks.spark-sink.type=org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname= centos
simple-agent.sinks.spark-sink.port= 41414

simple-agent.channels.memory-channel.type = memory

simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel

启动脚本:

flume-ng agent --name simple-agent --conf $FLUME_HOME/conf --conf-file $FLUME_HOME/conf/flume_pull.conf -Dflume.root.logger=INFO,console 

到以上步骤均没有出现问题。但是将本地测试代码启动,尝试与 Flume 的 sink 进行连接时,崩了 …

Flume 控制台报错:

2019-10-16 16:42:35,364 (New I/O  worker #1) [WARN - org.apache.avro.ipc.Responder.respond(Responder.java:174)] system error
org.apache.avro.AvroRuntimeException: Unknown datum type: java.lang.Exception: java.lang.NoClassDefFoundError: Could not initialize class org.apache.spark.streaming.flume.sink.EventBatch
    at org.apache.avro.generic.GenericData.getSchemaName(GenericData.java:593)
    at org.apache.avro.generic.GenericData.resolveUnion(GenericData.java:558)
    at org.apache.avro.generic.GenericDatumWriter.resolveUnion(GenericDatumWriter.java:144)
    at org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:71)
    at org.apache.avro.generic.GenericDatumWriter.write(GenericDatumWriter.java:58)
    at org.apache.avro.ipc.specific.SpecificResponder.writeError(SpecificResponder.java:74)
    at org.apache.avro.ipc.Responder.respond(Responder.java:169)
    at org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.messageReceived(NettyServer.java:188)
    at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
    at org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:173)
    at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:558)
    at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:786)
    at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
    at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:458)
    at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:439)
    at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
    at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
    at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:558)
    at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:553)
    at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
    at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
    at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:84)
    at org.jboss.netty.channel.socket.nio.AbstractNioWorker.processSelectedKeys(AbstractNioWorker.java:471)
    at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:332)
    at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:35)
    at org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:102)
    at org.jboss.netty.util.internal.DeadLockProofWorker$1.run(DeadLockProofWorker.java:42)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
2019-10-16 16:42:35,380 (New I/O  worker #1) [WARN - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.exceptionCaught(NettyServer.java:201)] Unexpected exception from downstream.
java.io.IOException: Connection reset by peer
    at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
    at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
    at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
    at sun.nio.ch.IOUtil.read(IOUtil.java:192)
    at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
    at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:59)
    at org.jboss.netty.channel.socket.nio.AbstractNioWorker.processSelectedKeys(AbstractNioWorker.java:471)
    at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:332)
    at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:35)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecuto

本地 IDE 控制台:

10/16 16:56:38 ERROR Requestor: Error in callback handler: java.lang.IllegalAccessError: tried to access method org.apache.avro.specific.SpecificData.<init>()V from class org.apache.spark.streaming.flume.sink.EventBatch
java.lang.IllegalAccessError: tried to access method org.apache.avro.specific.SpecificData.<init>()V from class org.apache.spark.streaming.flume.sink.EventBatch

解决思路

既然都有这个 org.apache.spark.streaming.flume.sink.EventBatch, 所幸就看看代码吧

package org.apache.spark.streaming.flume.sink;

import org.apache.avro.specific.SpecificData;
import org.apache.avro.message.BinaryMessageEncoder;
import org.apache.avro.message.BinaryMessageDecoder;
import org.apache.avro.message.SchemaStore;

@SuppressWarnings("all")
@org.apache.avro.specific.AvroGenerated
public class EventBatch extends org.apache.avro.specific.SpecificRecordBase implements org.apache.avro.specific.SpecificRecord {
  private static final long serialVersionUID = -2739787017790252011L;
  public static final org.apache.avro.Schema SCHEMA$ = new org.apache.avro.Schema.Parser().parse("{\"type\":\"record\",\"name\":\"EventBatch\",\"namespace\":\"org.apache.spark.streaming.flume.sink\",\"fields\":[{\"name\":\"errorMsg\",\"type\":\"string\",\"default\":\"\"},{\"name\":\"sequenceNumber\",\"type\":\"string\"},{\"name\":\"events\",\"type\":{\"type\":\"array\",\"items\":{\"type\":\"record\",\"name\":\"SparkSinkEvent\",\"fields\":[{\"name\":\"headers\",\"type\":{\"type\":\"map\",\"values\":\"string\"}},{\"name\":\"body\",\"type\":\"bytes\"}]}}}]}");
  public static org.apache.avro.Schema getClassSchema() { return SCHEMA$;}

  private static SpecificData MODEL$ = new SpecificData();

  private static final BinaryMessageEncoder<EventBatch> ENCODER =
      new BinaryMessageEncoder<EventBatch>(MODEL$, SCHEMA$);

  private static final BinaryMessageDecoder<EventBatch> DECODER =
      new BinaryMessageDecoder<EventBatch>(MODEL$, SCHEMA$);

在 IDEA 中可以看到 org.apache.avro.message.BinaryMessageEncoder; 这行是红色的,没有找到该方法。然后我就搜索了一下,
果然是我用的 avro 版本过旧。

解决方案

1. 在代码的 pom.xml 中添加以下依赖。

   <!-- https://mvnrepository.com/artifact/org.apache.avro/avro -->
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.8.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.avro/avro-ipc -->
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro-ipc</artifactId>
            <version>1.8.2</version>
        </dependency>

2. 将以上两个 jar 包上传至 $FLUME_HOME/lib 下,并删除旧的 avro jar 包。
欢迎关注我的公号:彪悍大蓝猫,持续分享大数据、SpringCloud 干货~

正文完
 0