共计 4207 个字符,预计需要花费 11 分钟才能阅读完成。
背景
我们负责的一个业务平台,有次在发现设置页面的加载特别特别地慢,简直就是令人发指
让用户等待 36s 肯定是不可能的,于是我们就要开启优化之旅了。
投石问路
既然是网站的响应问题,可以通过 Chrome 这个强大的工具帮助我们快速找到优化方向。
通过 Chrome 的 Network 除了可以看到接口请求耗时之外,还能看到一个时间的分配情况,选择一个配置没有那么多的项目,简单请求看看:
虽然只是一个只有三条记录的项目,加载项目设置都需要 17s,通过 Timing, 可以看到总的请求共耗时 17.67s,但有 17.57s 是在 Waiting(TTFB) 状态。
TTFB 是 Time to First Byte 的缩写,指的是浏览器开始收到服务器响应数据的时间(后台处理时间 + 重定向时间),是反映服务端响应速度的重要指标。
Profile 火焰图 + 代码调优
那么大概可以知道优化的大方向是在后端接口处理上面,后端代码是 Python + Flask 实现的,先不盲猜,直接上 Profile:
第一波优化:功能交互重新设计
说实话看到这段代码是绝望的:完全看不出什么?只是看到很多 gevent 和 Threading,因为太多协程或者线程?
这时候一定要结合代码来分析( 为了简短篇幅,参数部分用“…”代替 ):
def get_max_cpus(project_code, gids):
""""""
...
# 再定义一个获取 cpu 的函数
def get_max_cpu(project_setting, gid, token, headers):
group_with_machines = utils.get_groups(...)
hostnames = get_info_from_machines_info(...)
res = fetchers.MonitorAPIFetcher.get(...)
vals = [round(100 - val, 4)
for ts, val in res['series'][0]['data']
if not utils.is_nan(val)
]
max_val = max(vals) if vals else float('nan')
max_cpus[gid] = max_val
# 启动线程批量请求
for gid in gids:
t = Thread(target=get_max_cpu, args=(...))
threads.append(t)
t.start()
# 回收线程
for t in threads:
t.join()
return max_cpus
通过代码可以看到,为了更加快速获取 gids 所有的 cpu_max 数据,为每个 gid 分配一个线程去请求,最终再返回最大值。
这里会出现两个问题:
- 在一个 web api 做线程的 创建 和 销毁 是有很大成本的,因为接口会频繁被触发,线程的操作也会频繁发生,应该尽可能使用线程池之类的,降低系统花销;
- 该请求是加载某个 gid (群组) 下面的机器过去 7 天的 CPU 最大值,可以简单拍脑袋想下,这个值不是实时值也不是一个均值,而是一个最大值,很多时候可能并没有想象中那么大价值;
既然知道问题,那就有针对性的方案:
- 调整功能设计,不再默认加载 CPU 最大值,换成用户点击加载(一来降低并发的可能,二来不会影响整体);
- 因为 1 的调整,去掉多线程实现;
再看第一波优化后的火焰图:
这次看的火焰图虽然还有很大的优化空间,但起码看起来有点正常的样子了。
第二波优化:Mysql 操作优化处理
我们再从页面标记处(接口逻辑处)放大火焰图观察:
看到好大一片操作都是由 utils.py:get_group_profile_settings
这个函数引起的数据库操作热点。
同理,也是需要通过代码分析:
def get_group_profile_settings(project_code, gids):
# 获取 Mysql ORM 操作对象
ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))
session = get_postman_session()
profile_settings = {}
for gid in gids:
compound_name = project_code + ':' + gid
result = session.query(ProfileSetting).filter(ProfileSetting.name == compound_name).first()
if result:
result = result.as_dict()
tag_indexes = result.get('tag_indexes')
profile_settings[gid] = {
'tag_indexes': tag_indexes,
'interval': result['interval'],
'status': result['status'],
'profile_machines': result['profile_machines'],
'thread_settings': result['thread_settings']
}
...(省略)
return profile_settings
看到 Mysql,第一个反应就是 索引问题 ,所以优先去看看数据库的索引情况,如果有索引的话应该不会是瓶颈:
很奇怪这里明明已经有了索引了,为什么速度还是这个鬼样子呢!
正当毫无头绪的时候,突然想起在 第一波优化 的时候,发现 gid(群组)越多的影响越明显,然后看回上面的代码,看到那句:
for gid in gids:
...
我仿佛明白了什么。
这里是每个 gid 都去查询一次数据库,而项目经常有 20 ~ 50+ 个群组,那肯定直接爆炸了。
其实 Mysql 是支持单字段多值的查询,而且每条记录并没有太多的数据,我可以尝试下用 Mysql 的 OR 语法,除了避免多次网络请求,还能避开那该死的 for
正当我想事不宜迟直接搞起的时候,余光瞥见在刚才的代码还有一个地方可以优化,那就是:
看到这里,熟悉的朋友大概会明白是怎么回事。
GetAttr 这个方法是 Python 获取对象的 方法 / 属性 时候会用到,虽然不可不用,但是如果在使用太过频繁也会有一定的性能损耗。
结合代码一起来看:
def get_group_profile_settings(project_code, gids):
# 获取 Mysql ORM 操作对象
ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))
session = get_postman_session()
profile_settings = {}
for gid in gids:
compound_name = project_code + ':' + gid
result = session.query(ProfileSetting).filter(ProfileSetting.name == compound_name).first()
...
在这个遍历很多次的 for 里面,session.query(ProfileSetting) 被反复无效执行了,然后 filter 这个属性方法也被频繁读取和执行,所以这里也可以被优化。
总结下的问题就是:
1. 数据库的查询没有批量查询;2. ORM 的对象太多重复的生成,导致性能损耗;3. 属性读取后没有复用,导致在遍历次数较大的循环体内频繁 getAttr,成本被放大;
那么对症下药就是:
def get_group_profile_settings(project_code, gids):
# 获取 Mysql ORM 操作对象
ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))
session = get_postman_session()
# 批量查询 并将 filter 提到循环之外
query_results = query_instance.filter(ProfileSetting.name.in_(project_code + ':' + gid for gid in gids)
).all()
# 对全部的查询结果再单条处理
profile_settings = {}
for result in query_results:
if not result:
continue
result = result.as_dict()
gid = result['name'].split(':')[1]
tag_indexes = result.get('tag_indexes')
profile_settings[gid] = {
'tag_indexes': tag_indexes,
'interval': result['interval'],
'status': result['status'],
'profile_machines': result['profile_machines'],
'thread_settings': result['thread_settings']
}
...(省略)
return profile_settings
优化后的火焰图:
对比下优化前的相同位置的火焰图:
明显的优化点:优化前的,最底部的 utils.py:get_group_profile_settings 和 数据库相关的热点大大缩减。
其实这块还能继续优化,但是看到效果已经达到预期,就不再深入了。
优化效果
同一个项目的接口的响应时长从 37.6 s 优化成 1.47s,具体的截图:
优化总结
如同一句名言:
如果一个数据结构足够优秀,那么它是不需要多好的算法。
在优化功能的时候,最快的优化就是: 去掉那个功能!
其次快就是调整那个功能触发的频率或者复杂度!
从上到下,从用户使用场景去考虑这个功能,往往会带来更加简单高效的优化,嘿嘿!
当然很多时候我们是无法那么幸运的,如果我们实在无法去掉或者调整,那么就发挥做程序猿的价值咯:Profile
针对 Python 可以尝试:cProflile + gprof2dot
而针对 Go 可以使用: pprof + go-torch
最后,切记盲目调优,很多时候看到的代码问题都不一定是真正的性能瓶颈,需要结合工具来客观分析,这样才能有效直击痛点!
欢迎各位大神指点交流, QQ 讨论群: 258498217
转载请注明来源: https://segmentfault.com/a/1190000020956724