共计 3515 个字符,预计需要花费 9 分钟才能阅读完成。
利用 Map 对数据进行分组,对数字类型字段求平均值,或者求和。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.DoubleSummaryStatistics;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;
public class MapGroupViaLam {public static void main(String[] args) {List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
putValInto(list);
List<String> groupKeys = new ArrayList<>(Arrays.asList(new String[] {"PROVICE", "CITY"}));
String groupNameStr = reBuildGroupMap(list, groupKeys);
System.out.println("-------- 分组前 -------------");
list.forEach(x -> {System.out.println(x);
});
List<Map<String, Object>> result = new ArrayList<>();
Map<String, List<Map<String, Object>>> glist = list.stream()
.collect(Collectors.groupingBy(e -> e.get(groupNameStr).toString()));
glist.forEach((k, slist) -> {Map<String, Object> nmap = new HashMap<>();
DoubleSummaryStatistics sumcc = slist.stream()
.collect(Collectors.summarizingDouble(e -> Double.valueOf(e.get("NUM1").toString())));
DoubleSummaryStatistics sumcc2 = slist.stream()
.collect(Collectors.summarizingDouble(e -> Double.valueOf(e.get("NUM2").toString())));
nmap.put("PROVICE", slist.get(0).get("PROVICE"));
nmap.put("CITY", slist.get(0).get("CITY"));
nmap.put("NUM1", sumcc.getSum());// 求和
nmap.put("NUM2", sumcc2.getAverage());// 求和
result.add(nmap);
});
System.out.println("-------- 分组后 -------------");
result.forEach(x -> {System.out.println(x);
});
}
/**
* 重建需要 group by 的 map 添加一列数据保存所有 groupby 拼接字段
*
* @param excelDatas
* @param groupKeys
*/
private static String reBuildGroupMap(List<Map<String, Object>> excelDatas, List<String> groupKeys) {
String groupStr = "";
if (excelDatas != null && !excelDatas.isEmpty() && groupKeys != null && !groupKeys.isEmpty()) {StringBuffer newKey = new StringBuffer();
StringBuffer newVal = new StringBuffer();
for (int i = 0, excelDataSize = excelDatas.size(); i < excelDataSize; i++) {Map<String, Object> excelData = excelDatas.get(i);
Set<Map.Entry<String, Object>> eSets = excelData.entrySet();
for (Map.Entry<String, Object> entry : eSets) {String key = entry.getKey();
String val = entry.getValue() == null ? "" : entry.getValue().toString();
if (groupKeys.contains(key)) {newKey.append(key);
newVal.append(val);
}
}
if (newKey.length() > 0 && newVal.length() > 0) {if (i==0) {groupStr = newKey.toString();
}
excelData.put(newKey.toString(), newVal.toString());
}
newKey.setLength(0);
newVal.setLength(0);
}
}
return groupStr;
}
private static void putValInto(List<Map<String, Object>> excelDatas) {Map<String, Object> excelMap1 = new HashMap<String, Object>();
excelMap1.put("PROVICE", "四川省");
excelMap1.put("CITY", "成都市");
excelMap1.put("NUM1", "100");
excelMap1.put("NUM2", "100");
excelDatas.add(excelMap1);
Map<String, Object> excelMap2 = new HashMap<String, Object>();
excelMap2.put("PROVICE", "四川省");
excelMap2.put("CITY", "南充市");
excelMap2.put("NUM1", "200");
excelMap2.put("NUM2", "200");
excelDatas.add(excelMap2);
Map<String, Object> excelMap3 = new HashMap<String, Object>();
excelMap3.put("PROVICE", "四川省");
excelMap3.put("CITY", "南充市");
excelMap3.put("NUM1", "300");
excelMap3.put("NUM2", "300");
excelDatas.add(excelMap3);
Map<String, Object> excelMap4 = new HashMap<String, Object>();
excelMap4.put("PROVICE", "河南省");
excelMap4.put("CITY", "郑州市");
excelMap4.put("NUM1", "400");
excelMap4.put("NUM2", "400");
excelDatas.add(excelMap4);
Map<String, Object> excelMap5 = new HashMap<String, Object>();
excelMap5.put("PROVICE", "河南省");
excelMap5.put("CITY", "郑州市");
excelMap5.put("NUM1", "500");
excelMap5.put("NUM2", "500");
excelDatas.add(excelMap5);
Map<String, Object> excelMap6 = new HashMap<String, Object>();
excelMap6.put("PROVICE", "河南省");
excelMap6.put("CITY", "南阳市");
excelMap6.put("NUM1", "600");
excelMap6.put("NUM2", "600");
excelDatas.add(excelMap6);
}
}
正文完