JavaScript之手写Promise

7次阅读

共计 4556 个字符,预计需要花费 12 分钟才能阅读完成。

为更好的理解,推荐阅读 Promise/A+ 规范

实现一个简易版 Promise
在完成符合 Promise/A+ 规范的代码之前,我们可以先来实现一个简易版 Promise,因为在面试中,如果你能实现出一个简易版的 Promise 基本可以过关了。
那么我们先来搭建构建函数的大体框架
const PENDING = ‘pending’
const RESOLVED = ‘resolved’
const REJECTED = ‘rejected’

function MyPromise(fn) {
const that = this
that.state = PENDING
that.value = null
that.resolvedCallbacks = []
that.rejectedCallbacks = []
// 待完善 resolve 和 reject 函数
// 待完善执行 fn 函数
}

首先我们创建了三个常量用于表示状态,对于经常使用的一些值都应该通过常量来管理,便于开发及后期维护
在函数体内部首先创建了常量 that,因为代码可能会异步执行,用于获取正确的 this 对象
一开始 Promise 的状态应该是 pending

value 变量用于保存 resolve 或者 reject 中传入的值

resolvedCallbacks 和 rejectedCallbacks 用于保存 then 中的回调,因为当执行完 Promise 时状态可能还是等待中,这时候应该把 then 中的回调保存起来用于状态改变时使用

接下来我们来完善 resolve 和 reject 函数,添加在 MyPromise 函数体内部
function resolve(value) {
if (that.state === PENDING) {
that.state = RESOLVED
that.value = value
that.resolvedCallbacks.map(cb => cb(that.value))
}
}

function reject(value) {
if (that.state === PENDING) {
that.state = REJECTED
that.value = value
that.rejectedCallbacks.map(cb => cb(that.value))
}
}
这两个函数代码类似,就一起解析了

首先两个函数都得判断当前状态是否为等待中,因为规范规定只有等待态才可以改变状态
将当前状态更改为对应状态,并且将传入的值赋值给 value

遍历回调数组并执行

完成以上两个函数以后,我们就该实现如何执行 Promise 中传入的函数了
try {
fn(resolve, reject)
} catch (e) {
reject(e)
}

实现很简单,执行传入的参数并且将之前两个函数当做参数传进去
要注意的是,可能执行函数过程中会遇到错误,需要捕获错误并且执行 reject 函数

最后我们来实现较为复杂的 then 函数
MyPromise.prototype.then = function(onFulfilled, onRejected) {
const that = this
onFulfilled = typeof onFulfilled === ‘function’ ? onFulfilled : v => v
onRejected =
typeof onRejected === ‘function’
? onRejected
: r => {
throw r
}
if (that.state === PENDING) {
that.resolvedCallbacks.push(onFulfilled)
that.rejectedCallbacks.push(onRejected)
}
if (that.state === RESOLVED) {
onFulfilled(that.value)
}
if (that.state === REJECTED) {
onRejected(that.value)
}
}

首先判断两个参数是否为函数类型,因为这两个参数是可选参数
当参数不是函数类型时,需要创建一个函数赋值给对应的参数,同时也实现了透传,比如如下代码

// 该代码目前在简单版中会报错
// 只是作为一个透传的例子
Promise.resolve(4).then().then((value) => console.log(value))
接下来就是一系列判断状态的逻辑,当状态不是等待态时,就去执行相对应的函数。如果状态是等待态的话,就往回调函数中 push 函数,比如如下代码就会进入等待态的逻辑
new MyPromise((resolve, reject) => {
setTimeout(() => {
resolve(1)
}, 0)
}).then(value => {
console.log(value)
})
以上就是简单版 Promise 实现
实现一个符合 Promise/A+ 规范的 Promise
接下来大部分代码都是根据规范去实现的。
我们先来改造一下 resolve 和 reject 函数
function resolve(value) {
if (value instanceof MyPromise) {
return value.then(resolve, reject)
}
setTimeout(() => {
if (that.state === PENDING) {
that.state = RESOLVED
that.value = value
that.resolvedCallbacks.map(cb => cb(that.value))
}
}, 0)
}
function reject(value) {
setTimeout(() => {
if (that.state === PENDING) {
that.state = REJECTED
that.value = value
that.rejectedCallbacks.map(cb => cb(that.value))
}
}, 0)
}

对于 resolve 函数来说,首先需要判断传入的值是否为 Promise 类型
为了保证函数执行顺序,需要将两个函数体代码使用 setTimeout 包裹起来

接下来继续改造 then 函数中的代码,首先我们需要新增一个变量 promise2,因为每个 then 函数都需要返回一个新的 Promise 对象,该变量用于保存新的返回对象,然后我们先来改造判断等待态的逻辑
if (that.state === PENDING) {
return (promise2 = new MyPromise((resolve, reject) => {
that.resolvedCallbacks.push(() => {
try {
const x = onFulfilled(that.value)
resolutionProcedure(promise2, x, resolve, reject)
} catch (r) {
reject(r)
}
})

that.rejectedCallbacks.push(() => {
try {
const x = onRejected(that.value)
resolutionProcedure(promise2, x, resolve, reject)
} catch (r) {
reject(r)
}
})
}))
}

首先我们返回了一个新的 Promise 对象,并在 Promise 中传入了一个函数
函数的基本逻辑还是和之前一样,往回调数组中 push 函数
同样,在执行函数的过程中可能会遇到错误,所以使用了 try…catch 包裹
规范规定,执行 onFulfilled 或者 onRejected 函数时会返回一个 x,并且执行 Promise 解决过程,这是为了不同的 Promise 都可以兼容使用,比如 JQuery 的 Promise 能兼容 ES6 的 Promise

接下来我们改造判断执行态的逻辑
if (that.state === RESOLVED) {
return (promise2 = new MyPromise((resolve, reject) => {
setTimeout(() => {
try {
const x = onFulfilled(that.value)
resolutionProcedure(promise2, x, resolve, reject)
} catch (reason) {
reject(reason)
}
})
}))
}

其实大家可以发现这段代码和判断等待态的逻辑基本一致,无非是传入的函数的函数体需要异步执行,这也是规范规定的
对于判断拒绝态的逻辑这里就不一一赘述了,留给大家自己完成这个作业

最后,当然也是最难的一部分,也就是实现兼容多种 Promise 的 resolutionProcedure 函数
function resolutionProcedure(promise2, x, resolve, reject) {
if (promise2 === x) {
return reject(new TypeError(‘Error’))
}
}
首先规范规定了 x 不能与 promise2 相等,这样会发生循环引用的问题,比如如下代码
let p = new MyPromise((resolve, reject) => {
resolve(1)
})
let p1 = p.then(value => {
return p1
})
然后需要判断 x 的类型
if (x instanceof MyPromise) {
x.then(function(value) {
resolutionProcedure(promise2, value, resolve, reject)
}, reject)
}
这里的代码是完全按照规范实现的。如果 x 为 Promise 的话,需要判断以下几个情况:

如果 x 处于等待态,Promise 需保持为等待态直至 x 被执行或拒绝
如果 x 处于其他状态,则用相同的值处理 Promise

当然以上这些是规范需要我们判断的情况,实际上我们不判断状态也是可行的。
接下来我们继续按照规范来实现剩余的代码
let called = false
if (x !== null && (typeof x === ‘object’ || typeof x === ‘function’)) {
try {
let then = x.then
if (typeof then === ‘function’) {
then.call(
x,
y => {
if (called) return
called = true
resolutionProcedure(promise2, y, resolve, reject)
},
e => {
if (called) return
called = true
reject(e)
}
)
} else {
resolve(x)
}
} catch (e) {
if (called) return
called = true
reject(e)
}
} else {
resolve(x)
}

首先创建一个变量 called 用于判断是否已经调用过函数
然后判断 x 是否为对象或者函数,如果都不是的话,将 x 传入 resolve 中
如果 x 是对象或者函数的话,先把 x.then 赋值给 then,然后判断 then 的类型,如果不是函数类型的话,就将 x 传入 resolve 中
如果 then 是函数类型的话,就将 x 作为函数的作用域 this 调用之,并且传递两个回调函数作为参数,第一个参数叫做 resolvePromise,第二个参数叫做 rejectPromise,两个回调函数都需要判断是否已经执行过函数,然后进行相应的逻辑
以上代码在执行的过程中如果抛错了,将错误传入 reject 函数中

以上就是符合 Promise/A+ 规范的实现

正文完
 0