共计 27222 个字符,预计需要花费 69 分钟才能阅读完成。
文章作者:foochane
原文链接:https://foochane.cn/article/2019062501.html
1 基本介绍
1.1 HIVE 简单介绍
Hive
是一个可以将 SQL
翻译为 MR
程序的工具,支持用户将 HDFS
上的文件映射为表结构,然后用户就可以输入 SQL
对这些表(HDFS
上的文件)进行查询分析。Hive
将用户定义的库、表结构等信息存储 hive
的元数据库(可以是本地derby
,也可以是远程mysql
)中。
1.2 Hive 的用途
- 做数据分析,不用自己写大量的
MR
程序,只需要写SQL
脚本即可 - 用于构建大数据体系下的数据仓库
hive 2
以后 把底层引擎从 MapReduce
换成了Spark
启动 hive
前要先启动hdfs
和yarn
2 使用方式
2.1 方式 1:直接使用 hive 服务端
输入命令 $ hive
即可:
hadoop@Master:~$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hive-2.3.5/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hadoop-2.7.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Logging initialized using configuration in file:/usr/local/bigdata/hive-2.3.5/conf/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive>show databases;
OK
dbtest
default
Time taken: 3.539 seconds, Fetched: 2 row(s)
hive>
技巧:
让提示符显示当前库:
hive>set hive.cli.print.current.db=true;
显示查询结果是显示自带名称:
hive>set hive.cli.print.header=true;
这样设置只是对当前窗口有效,永久生效可以在当前用户目录下建一个 .hiverc
文件。
加入如下内容:
set hive.cli.print.current.db=true;
set hive.cli.print.header=true;
2.2 方式 2:使用 beeline 客户端
将 hive 启动为一个服务端,然后可以在任意一台机器上使用 beeline 客户端连接 hive 服务,进行交互式查询
hive 是一个单机的服务端可以在任何一台机器里安装,它访问的是 hdfs 集群。
启动 hive 服务:
$ nohup hiveserver2 1>/dev/null 2>&1 &
启动后,可以用 beeline 去连接,beeline 是一个客户端,可以在任意机器启动, 只要能够跟 hive 服务端相连即可。
在本地启动 beeline
$ beeline -u jdbc:hive2://localhost:10000 -n hadoop -p hadoop
在启动机器上启动 beeline
$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
示例:
hadoop@Master:~$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
Connecting to jdbc:hive2://Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Supplied authorities: Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Resolved authority: Master:10000
19/06/25 01:50:13 INFO jdbc.HiveConnection: Will try to open client transport with JDBC Uri: jdbc:hive2://Master:10000
Connected to: Apache Hive (version 2.3.5)
Driver: Hive JDBC (version 1.2.1.spark2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.2.1.spark2 by Apache Hive
0: jdbc:hive2://Master:10000>
参数说明
- u:指定连接方式
- n:登录的用户(系统用户)
- p:用户密码
报错
errorMessage:Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: hadoop is not allowed to impersonate hadoop), serverProtocolVersion:null)
解决
在 hadoop 配置文件中的 core-site.xml 文件中添加如下内容, 然后重启 hadoop 集群:
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>hadoop</value>
<description>Allow the superuser oozie to impersonate any members of the group group1 and group2</description>
</property>
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>Master,127.0.0.1,localhost</value>
<description>The superuser can connect only from host1 and host2 to impersonate a user</description>
</property>
2.3 方式 3:使用 hive 命令运行 sql
接用 hive -e
在命令行中运行 sql
命令,该命令可以一起运行多条 sql
语句,用 ;
隔开。
hive -e "sql1;sql2;sql3;sql4"
另外,还可以使用 hive -f
命令。
事先将 sql 语句写入一个文件比如 q.hql
,然后用 hive -f
命令执行:
bin/hive -f q.hql
2.4 方式 4:写脚本
可以将 方式 3
写入一个 xxx.sh
脚本中, 然后运行该脚本。
3 表的基本操作
3.1 新建数据库
create database db1;
示例:
0: jdbc:hive2://Master:10000> create database db1;
No rows affected (1.123 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name |
+----------------+--+
| db1 |
| dbtest |
| default |
+----------------+--+
成功后,hive 就会在 /user/hive/warehouse/
下建一个文件夹:db1.db
3.2 删除数据库
drop database db1;
示例:
0: jdbc:hive2://Master:10000> drop database db1;
No rows affected (0.969 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name |
+----------------+--+
| dbtest |
| default |
+----------------+--+
3.3 建内部表
use db1;
create table t_test(id int,name string,age int)
row format delimited
fields terminated by ',';
示例:
0: jdbc:hive2://Master:10000> use db1;
No rows affected (0.293 seconds)
0: jdbc:hive2://Master:10000> create table t_test(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ',';
No rows affected (1.894 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
| age | int | |
+-----------+------------+----------+--+
3 rows selected (0.697 seconds)
建表后,hive 会在仓库目录中建一个表目录:/user/hive/warehouse/db1.db/t_test
3.4 建外部表
create external table t_test1(id int,name string,age int)
row format delimited
fields terminated by ','
location '/user/hive/external/t_test1';
这里的 location
指的是 hdfs
上的目录,可以直接在该目录下放入相应格式的文件,就可以在 hive
表中查看到。
示例:
0: jdbc:hive2://Master:10000> create external table t_test1(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ','
0: jdbc:hive2://Master:10000> location '/user/hive/external/t_test1';
No rows affected (0.7 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test1;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
| age | int | |
+-----------+------------+----------+--+
3 rows selected (0.395 seconds)
本地创建测试文件user.data
1,xiaowang,28
2,xiaoli,18
3,xiaohong,23
放入 hdfs 中:
$ hdfs dfs -mkdir -p /user/hive/external/t_test1
$ hdfs dfs -put ./user.data /user/hive/external/t_test1
此时在 hive 表中就可以查看到数据:
0: jdbc:hive2://Master:10000> select * from db1.t_test1;
+-------------+---------------+--------------+--+
| t_test1.id | t_test1.name | t_test1.age |
+-------------+---------------+--------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+-------------+---------------+--------------+--+
3 rows selected (8 seconds)
注意:如果删除外部表,hdfs 里的文件并不会删除
也就是如果包 db1.t_test1
删除,hdfs 下 /user/hive/external/t_test1/user.data
文件并不会被删除。
3.5 导入数据
本质上就是把数据文件放入表目录;
可以用 hive 命令来做:
load data [local] inpath '/data/path' [overwrite] into table t_test;
加 local
代表导入本地数据。
导入本地数据
load data local inpath '/home/hadoop/user.data' into table t_test;
示例:
0: jdbc:hive2://Master:10000> load data local inpath '/home/hadoop/user.data' into table t_test;
No rows affected (2.06 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id | t_test.name | t_test.age |
+------------+--------------+-------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+------------+--------------+-------------+--+
导入 hdfs 中的数据
load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
示例:
0: jdbc:hive2://Master:10000> load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
No rows affected (1.399 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id | t_test.name | t_test.age |
+------------+--------------+-------------+--+
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
| 1 | xiaowang | 28 |
| 2 | xiaoli | 18 |
| 3 | xiaohong | 23 |
+------------+--------------+-------------+--+
6 rows selected (0.554 seconds)
注意:从本地导入数据,本地数据不是发生变化,从 hdfs 中导入数据,hdfs 中的导入的文件会被移动到数据仓库相应的目录下
3.6 建分区表
分区的意义在于可以将数据分子目录存储,以便于查询时让数据读取范围更精准
create table t_test1(id int,name string,age int,create_time bigint)
partitioned by (day string,country string)
row format delimited
fields terminated by ',';
插入数据到指定分区:
> load data [local] inpath '/data/path1' [overwrite] into table t_test partition(day='2019-06-04',country='China');
> load data [local] inpath '/data/path2' [overwrite] into table t_test partition(day='2019-06-05',country='China');
> load data [local] inpath '/data/path3' [overwrite] into table t_test partition(day='2019-06-04',country='England');
导入完成后,形成的目录结构如下:
/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=China/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=England/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-05/country=China/...
4 查询语法
4.1 条件查询
select * from t_table where a<1000 and b>0;
4.2 join 关联查询
各类 join
测试数据:
a.txt:
a,1
b,2
c,3
d,4
b.txt:
b,16
c,17
d,18
e,19
建表导入数据:
create table t_a(name string,num int)
row format delimited
fields terminated by ',';
create table t_b(name string,age int)
row format delimited
fields terminated by ',';
load data local inpath '/home/hadoop/a.txt' into table t_a;
load data local inpath '/home/hadoop/b.txt' into table t_b;
表数据如下:
0: jdbc:hive2://Master:10000> select * from t_a;
+-----------+----------+--+
| t_a.name | t_a.num |
+-----------+----------+--+
| a | 1 |
| b | 2 |
| c | 3 |
| d | 4 |
+-----------+----------+--+
4 rows selected (0.523 seconds)
0: jdbc:hive2://Master:10000> select * from t_b;
+-----------+----------+--+
| t_b.name | t_b.age |
+-----------+----------+--+
| b | 16 |
| c | 17 |
| d | 18 |
| e | 19 |
+-----------+----------+--+
4 rows selected (0.482 seconds)
4.3 内连接
指定 join 条件
select a.*,b.*
from
t_a a join t_b b on a.name=b.name;
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
+---------+--------+---------+--------+--+
4.4 左外连接(左连接)
select a.*,b.*
from
t_a a left outer join t_b b on a.name=b.name;
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left outer join t_b b on a.name=b.name;
...
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| a | 1 | NULL | NULL |
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
+---------+--------+---------+--------+--+
4.5 右外连接(右连接)
select a.*,b.*
from
t_a a right outer join t_b b on a.name=b.name;
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a right outer join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
| NULL | NULL | e | 19 |
+---------+--------+---------+--------+--+
4.6 全外连接
select a.*,b.*
from
t_a a full outer join t_b b on a.name=b.name;
示例:
0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a full outer join t_b b on a.name=b.name;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+--------+---------+--------+--+
| a.name | a.num | b.name | b.age |
+---------+--------+---------+--------+--+
| a | 1 | NULL | NULL |
| b | 2 | b | 16 |
| c | 3 | c | 17 |
| d | 4 | d | 18 |
| NULL | NULL | e | 19 |
+---------+--------+---------+--------+--+
4.7 左半连接
求存在于 a 表,且 b 表里也存在的数据。
select a.*
from
t_a a left semi join t_b b on a.name=b.name;
示例:
0: jdbc:hive2://Master:10000> select a.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left semi join t_b b on a.name=b.name;
.....
+---------+--------+--+
| a.name | a.num |
+---------+--------+--+
| b | 2 |
| c | 3 |
| d | 4 |
+---------+--------+--+
4.8 group by 分组聚合
构建测试数据
192.168.33.3,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.3,http://www.xxx.cn/teach,2019-08-04 15:35:20
192.168.33.4,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.4,http://www.xxx.cn/job,2019-08-04 16:30:20
192.168.33.5,http://www.xxx.cn/job,2019-08-04 15:40:20
192.168.33.3,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.44.3,http://www.xxx.cn/teach,2019-08-05 15:35:20
192.168.33.44,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.33.46,http://www.xxx.cn/job,2019-08-05 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-05 15:40:20
192.168.133.3,http://www.xxx.cn/register,2019-08-06 15:30:20
192.168.111.3,http://www.xxx.cn/register,2019-08-06 15:35:20
192.168.34.44,http://www.xxx.cn/pay,2019-08-06 15:30:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.25,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.36,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
建分区表,导入数据:
create table t_pv(ip string,url string,time string)
partitioned by (dt string)
row format delimited
fields terminated by ',';
load data local inpath '/home/hadoop/pv.log.0804' into table t_pv partition(dt='2019-08-04');
load data local inpath '/home/hadoop/pv.log.0805' into table t_pv partition(dt='2019-08-05');
load data local inpath '/home/hadoop/pv.log.0806' into table t_pv partition(dt='2019-08-06');
查看数据:
0: jdbc:hive2://Master:10000> select * from t_pv;
+----------------+------------------------------+----------------------+-------------+--+
| t_pv.ip | t_pv.url | t_pv.time | t_pv.dt |
+----------------+------------------------------+----------------------+-------------+--+
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 | 2019-08-04 |
| 192.168.33.3 | http://www.xxx.cn/teach | 2019-08-04 15:35:20 | 2019-08-04 |
| 192.168.33.4 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 | 2019-08-04 |
| 192.168.33.4 | http://www.xxx.cn/job | 2019-08-04 16:30:20 | 2019-08-04 |
| 192.168.33.5 | http://www.xxx.cn/job | 2019-08-04 15:40:20 | 2019-08-05 |
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 | 2019-08-05 |
| 192.168.44.3 | http://www.xxx.cn/teach | 2019-08-05 15:35:20 | 2019-08-05 |
| 192.168.33.44 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 | 2019-08-05 |
| 192.168.33.46 | http://www.xxx.cn/job | 2019-08-05 16:30:20 | 2019-08-05 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-05 15:40:20 | 2019-08-06 |
| 192.168.133.3 | http://www.xxx.cn/register | 2019-08-06 15:30:20 | 2019-08-06 |
| 192.168.111.3 | http://www.xxx.cn/register | 2019-08-06 15:35:20 | 2019-08-06 |
| 192.168.34.44 | http://www.xxx.cn/pay | 2019-08-06 15:30:20 | 2019-08-06 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.25 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
| 192.168.33.36 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 | 2019-08-06 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 | 2019-08-06 |
+----------------+------------------------------+----------------------+-------------+--+
查看表分区:
show partitions t_pv;
0: jdbc:hive2://Master:10000> show partitions t_pv;
+----------------+--+
| partition |
+----------------+--+
| dt=2019-08-04 |
| dt=2019-08-05 |
| dt=2019-08-06 |
+----------------+--+
3 rows selected (0.575 seconds)
每一行的 url 变成大写
- 针对每一行进行运算
select ip,upper(url),time
from t_pv
0: jdbc:hive2://Master:10000> select ip,upper(url),time
0: jdbc:hive2://Master:10000> from t_pv
+----------------+------------------------------+----------------------+--+
| ip | _c1 | time |
+----------------+------------------------------+----------------------+--+
| 192.168.33.3 | HTTP://WWW.XXX.CN/STU | 2019-08-04 15:30:20 |
| 192.168.33.3 | HTTP://WWW.XXX.CN/TEACH | 2019-08-04 15:35:20 |
| 192.168.33.4 | HTTP://WWW.XXX.CN/STU | 2019-08-04 15:30:20 |
| 192.168.33.4 | HTTP://WWW.XXX.CN/JOB | 2019-08-04 16:30:20 |
| 192.168.33.5 | HTTP://WWW.XXX.CN/JOB | 2019-08-04 15:40:20 |
| 192.168.33.3 | HTTP://WWW.XXX.CN/STU | 2019-08-05 15:30:20 |
| 192.168.44.3 | HTTP://WWW.XXX.CN/TEACH | 2019-08-05 15:35:20 |
| 192.168.33.44 | HTTP://WWW.XXX.CN/STU | 2019-08-05 15:30:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/JOB | 2019-08-05 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-05 15:40:20 |
| 192.168.133.3 | HTTP://WWW.XXX.CN/REGISTER | 2019-08-06 15:30:20 |
| 192.168.111.3 | HTTP://WWW.XXX.CN/REGISTER | 2019-08-06 15:35:20 |
| 192.168.34.44 | HTTP://WWW.XXX.CN/PAY | 2019-08-06 15:30:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
| 192.168.33.46 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.25 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
| 192.168.33.36 | HTTP://WWW.XXX.CN/EXCERSIZE | 2019-08-06 16:30:20 |
| 192.168.33.55 | HTTP://WWW.XXX.CN/JOB | 2019-08-06 15:40:20 |
+----------------+------------------------------+----------------------+--+
求每条 url 的访问次数
select url ,count(1) -- 对分好组的数据进行逐行运算
from t_pv
group by url;
0: jdbc:hive2://Master:10000> select url ,count(1)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
·····
+------------------------------+------+--+
| url | _c1 |
+------------------------------+------+--+
| http://www.xxx.cn/excersize | 3 |
| http://www.xxx.cn/job | 7 |
| http://www.xxx.cn/pay | 1 |
| http://www.xxx.cn/register | 2 |
| http://www.xxx.cn/stu | 4 |
| http://www.xxx.cn/teach | 2 |
+------------------------------+------+--+
可以给_c1 加入字段名称:
select url ,count(1) as count
from t_pv
group by url;
求每个页面的访问者中 ip 最大的一个
select url,max(ip)
from t_pv
group by url;
0: jdbc:hive2://Master:10000> select url,max(ip)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+------------------------------+----------------+--+
| url | _c1 |
+------------------------------+----------------+--+
| http://www.xxx.cn/excersize | 192.168.33.46 |
| http://www.xxx.cn/job | 192.168.33.55 |
| http://www.xxx.cn/pay | 192.168.34.44 |
| http://www.xxx.cn/register | 192.168.133.3 |
| http://www.xxx.cn/stu | 192.168.33.44 |
| http://www.xxx.cn/teach | 192.168.44.3 |
+------------------------------+----------------+--+
求每个用户访问同一个页面的所有记录中,时间最晚的一条
select ip,url,max(time)
from t_pv
group by ip,url;
0: jdbc:hive2://Master:10000> select ip,url,max(time)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by ip,url;
.....
+----------------+------------------------------+----------------------+--+
| ip | url | _c2 |
+----------------+------------------------------+----------------------+--+
| 192.168.111.3 | http://www.xxx.cn/register | 2019-08-06 15:35:20 |
| 192.168.133.3 | http://www.xxx.cn/register | 2019-08-06 15:30:20 |
| 192.168.33.25 | http://www.xxx.cn/job | 2019-08-06 15:40:20 |
| 192.168.33.3 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 |
| 192.168.33.3 | http://www.xxx.cn/teach | 2019-08-04 15:35:20 |
| 192.168.33.36 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 |
| 192.168.33.4 | http://www.xxx.cn/job | 2019-08-04 16:30:20 |
| 192.168.33.4 | http://www.xxx.cn/stu | 2019-08-04 15:30:20 |
| 192.168.33.44 | http://www.xxx.cn/stu | 2019-08-05 15:30:20 |
| 192.168.33.46 | http://www.xxx.cn/excersize | 2019-08-06 16:30:20 |
| 192.168.33.46 | http://www.xxx.cn/job | 2019-08-05 16:30:20 |
| 192.168.33.5 | http://www.xxx.cn/job | 2019-08-04 15:40:20 |
| 192.168.33.55 | http://www.xxx.cn/job | 2019-08-06 15:40:20 |
| 192.168.34.44 | http://www.xxx.cn/pay | 2019-08-06 15:30:20 |
| 192.168.44.3 | http://www.xxx.cn/teach | 2019-08-05 15:35:20 |
+----------------+------------------------------+----------------------+--+
求 8 月 4 号以后,每天 http://www.xxx.cn/job 的总访问 …,及访问者中 ip 地址中最大的
select dt,'http://www.xxx.cn/job',count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt having dt>'2019-08-04';
select dt,max(url),count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt having dt>'2019-08-04';
select dt,url,count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job'
group by dt,url having dt>'2019-08-04';
select dt,url,count(1),max(ip)
from t_pv
where url='http://www.xxx.cn/job' and dt>'2019-08-04'
group by dt,url;
求 8 月 4 号以后,每天每个页面的总访问次数,及访问者中 ip 地址中最大的
select dt,url,count(1),max(ip)
from t_pv
where dt>'2019-08-04'
group by dt,url;
求 8 月 4 号以后,每天每个页面的总访问次数,及访问者中 ip 地址中最大的,且只查询出总访问次数 >2 的记录
- 方式 1:
select dt,url,count(1) as cnts,max(ip)
from t_pv
where dt>'2019-08-04'
group by dt,url having cnts>2;
- 方式 2:用子查询
select dt,url,cnts,max_ip
from
(select dt,url,count(1) as cnts,max(ip) as max_ip
from t_pv
where dt>'2019-08-04'
group by dt,url) tmp
where cnts>2;
5 基本数据类型
5.1 数字类型
-
TINYINT
(1-byte signed integer, from -128 to 127) -
SMALLINT
(2-byte signed integer, from -32,768 to 32,767) -
INT/INTEGER
(4-byte signed integer, from -2,147,483,648 to 2,147,483,647) -
BIGINT
(8-byte signed integer, from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807) -
FLOAT
(4-byte single precision floating point number) -
DOUBLE
(8-byte double precision floating point number)
示例:
create table t_test(a string ,b int,c bigint,d float,e double,f tinyint,g smallint)
5.2 日期类型
-
TIMESTAMP
(Note: Only available starting with Hive 0.8.0) -
DATE
(Note: Only available starting with Hive 0.12.0)
示例,假如有以下数据文件:
1,zhangsan,1985-06-30
2,lisi,1986-07-10
3,wangwu,1985-08-09
那么,就可以建一个表来对数据进行映射
create table t_customer(id int,name string,birthday date)
row format delimited fields terminated by ',';
然后导入数据
load data local inpath '/root/customer.dat' into table t_customer;
然后,就可以正确查询
5.3 字符串类型
STRING
-
VARCHAR
(Note: Only available starting with Hive 0.12.0) -
CHAR
(Note: Only available starting with Hive 0.13.0)
5.4 杂类型
BOOLEAN
-
BINARY
(Note: Only available starting with Hive 0.8.0)
5.5 复合类型
5.5.1 数组类型
有如下数据:
玩具总动员 4, 汤姆·汉克斯: 蒂姆·艾伦: 安妮·波茨,2019-06-21
流浪地球, 屈楚萧: 吴京: 李光洁: 吴孟达,2019-02-05
千与千寻, 柊瑠美: 入野自由: 夏木真理: 菅原文太,2019-06-21
战狼 2, 吴京: 弗兰克·格里罗: 吴刚: 张翰: 卢靖姗,2017-08-16
建表导入数据:
-- 建表映射:create table t_movie(movie_name string,actors array<string>,first_show date)
row format delimited fields terminated by ','
collection items terminated by ':';
-- 导入数据
load data local inpath '/home/hadoop/actor.dat' into table t_movie;
0: jdbc:hive2://Master:10000> select * from t_movie;
+---------------------+-----------------------------------+---------------------+--+
| t_movie.movie_name | t_movie.actors | t_movie.first_show |
+---------------------+-----------------------------------+---------------------+--+
| 玩具总动员 4 | ["汤姆·汉克斯","蒂姆·艾伦","安妮·波茨"] | 2019-06-21 |
| 流浪地球 | ["屈楚萧","吴京","李光洁","吴孟达"] | 2019-02-05 |
| 千与千寻 | ["柊瑠美","入野自由","夏木真理","菅原文太"] | 2019-06-21 |
| 战狼 2 | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"] | 2017-08-16 |
+---------------------+-----------------------------------+---------------------+--+
array[]
查询每部电影主演
select movie_name,actors[0],first_show from t_movie;
0: jdbc:hive2://Master:10000> select movie_name,actors[0],first_show from t_movie;
+-------------+---------+-------------+--+
| movie_name | _c1 | first_show |
+-------------+---------+-------------+--+
| 玩具总动员 4 | 汤姆·汉克斯 | 2019-06-21 |
| 流浪地球 | 屈楚萧 | 2019-02-05 |
| 千与千寻 | 柊瑠美 | 2019-06-21 |
| 战狼 2 | 吴京 | 2017-08-16 |
+-------------+---------+-------------+--+
array_contains
查询包含 ’ 吴京 ’ 的电影
select movie_name,actors,first_show
from t_movie where array_contains(actors,'吴京');
0: jdbc:hive2://Master:10000> select movie_name,actors,first_show
0: jdbc:hive2://Master:10000> from t_movie where array_contains(actors,'吴京');
+-------------+-----------------------------------+-------------+--+
| movie_name | actors | first_show |
+-------------+-----------------------------------+-------------+--+
| 流浪地球 | ["屈楚萧","吴京","李光洁","吴孟达"] | 2019-02-05 |
| 战狼 2 | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"] | 2017-08-16 |
+-------------+-----------------------------------+-------------+--+
size
每部电影查询列出的演员数量
select movie_name
,size(actors) as actor_number
,first_show
from t_movie;
0: jdbc:hive2://Master:10000> from t_movie;
+-------------+---------------+-------------+--+
| movie_name | actor_number | first_show |
+-------------+---------------+-------------+--+
| 玩具总动员 4 | 3 | 2019-06-21 |
| 流浪地球 | 4 | 2019-02-05 |
| 千与千寻 | 4 | 2019-06-21 |
| 战狼 2 | 5 | 2017-08-16 |
+-------------+---------------+-------------+--+
5.5.2 map 类型
数据
1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
4,mayun,father:mayongzhen#mother:angelababy,26
导入数据
-- 建表映射上述数据
create table t_family(id int,name string,family_members map<string,string>,age int)
row format delimited fields terminated by ','
collection items terminated by '#'
map keys terminated by ':';
-- 导入数据
load data local inpath '/root/hivetest/fm.dat' into table t_family;
0: jdbc:hive2://Master:10000> select * from t_family;
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| t_family.id | t_family.name | t_family.family_members | t_family.age |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| 1 | zhangsan | {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"} | 28 |
| 2 | lisi | {"father":"mayun","mother":"huangyi","brother":"guanyu"} | 22 |
| 3 | wangwu | {"father":"wangjianlin","mother":"ruhua","sister":"jingtian"} | 29 |
| 4 | mayun | {"father":"mayongzhen","mother":"angelababy"} | 26 |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
查出每个人的 爸爸、姐妹
select id,name,family_members["father"] as father,family_members["sister"] as sister,age
from t_family;
查出每个人有哪些亲属关系
select id,name,map_keys(family_members) as relations,age
from t_family;
查出每个人的亲人名字
select id,name,map_values(family_members) as relations,age
from t_family;
查出每个人的亲人数量
select id,name,size(family_members) as relations,age
from t_family;
查出所有拥有兄弟的人及他的兄弟是谁
-- 方案 1:一句话写完
select id,name,age,family_members['brother']
from t_family where array_contains(map_keys(family_members),'brother');
-- 方案 2:子查询
select id,name,age,family_members['brother']
from
(select id,name,age,map_keys(family_members) as relations,family_members
from t_family) tmp
where array_contains(relations,'brother');
5.5.3 stuct 类型
数据
1,zhangsan,18:male: 深圳
2,lisi,28:female: 北京
3,wangwu,38:male: 广州
4,laowang,26:female: 上海
5,yangyang,35:male: 杭州
导入数据:
-- 建表映射上述数据
drop table if exists t_user;
create table t_user(id int,name string,info struct<age:int,sex:string,addr:string>)
row format delimited fields terminated by ','
collection items terminated by ':';
-- 导入数据
load data local inpath '/home/hadoop/user.dat' into table t_user;
0: jdbc:hive2://Master:10000> select * from t_user;
+------------+--------------+----------------------------------------+--+
| t_user.id | t_user.name | t_user.info |
+------------+--------------+----------------------------------------+--+
| 1 | zhangsan | {"age":18,"sex":"male","addr":"深圳"} |
| 2 | lisi | {"age":28,"sex":"female","addr":"北京"} |
| 3 | wangwu | {"age":38,"sex":"male","addr":"广州"} |
| 4 | laowang | {"age":26,"sex":"female","addr":"上海"} |
| 5 | yangyang | {"age":35,"sex":"male","addr":"杭州"} |
+------------+--------------+----------------------------------------+--+
查询每个人的 id name 和地址
select id,name,info.addr
from t_user;
0: jdbc:hive2://Master:10000> select id,name,info.addr
0: jdbc:hive2://Master:10000> from t_user;
+-----+-----------+-------+--+
| id | name | addr |
+-----+-----------+-------+--+
| 1 | zhangsan | 深圳 |
| 2 | lisi | 北京 |
| 3 | wangwu | 广州 |
| 4 | laowang | 上海 |
| 5 | yangyang | 杭州 |
+-----+-----------+-------+--+
6 常用内置函数
测试函数
select substr("abcdef",1,3);
0: jdbc:hive2://Master:10000> select substr("abcdef",1,3);
+------+--+
| _c0 |
+------+--+
| abc |
+------+--+
6.1 时间处理函数
from_unixtime(21938792183,'yyyy-MM-dd HH:mm:ss')
返回:‘2017-06-03 17:50:30’
6.2 类型转换函数
select cast("8" as int);
select cast("2019-2-3" as data)
6.3 字符串截取和拼接
substr("abcde",1,3) --> 'abc'
concat('abc','def') --> 'abcdef'
0: jdbc:hive2://Master:10000> select substr("abcde",1,3);
+------+--+
| _c0 |
+------+--+
| abc |
+------+--+
1 row selected (0.152 seconds)
0: jdbc:hive2://Master:10000> select concat('abc','def');
+---------+--+
| _c0 |
+---------+--+
| abcdef |
+---------+--+
1 row selected (0.165 seconds)
6.4 Json 数据解析函数
get_json_object('{\"key1\":3333,\"key2\":4444}' , '$.key1')
返回:3333
json_tuple('{\"key1\":3333,\"key2\":4444}','key1','key2') as(key1,key2)
返回:3333, 4444
6.5 url 解析函数
parse_url_tuple('http://www.xxxx.cn/bigdata?userid=8888','HOST','PATH','QUERY','QUERY:userid')
返回:www.xxxx.cn /bigdata userid=8888 8888
7 自定义函数
7.1 问题
测试数据如下:
1,zhangsan:18-1999063117:30:00-beijing
2,lisi:28-1989063117:30:00-shanghai
3,wangwu:20-1997063117:30:00-tieling
建表导入数据:
create table t_user_info(info string)
row format delimited;
导入数据:
load data local inpath '/root/udftest.data' into table t_user_info;
需求:利用上表生成如下新表
t_user:uid,uname,age,birthday,address
思路:可以自定义一个函数 parse_user_info(),能传入一行上述数据,返回切分好的字段
然后可以通过如下 sql 完成需求:
create t_user
as
select
parse_user_info(info,0) as uid,
parse_user_info(info,1) as uname,
parse_user_info(info,2) as age,
parse_user_info(info,3) as birthday_date,
parse_user_info(info,4) as birthday_time,
parse_user_info(info,5) as address
from t_user_info;
实现关键:自定义 parse_user_info() 函数
7.2 实现步骤
1、写一个 java 类实现函数所需要的功能
public class UserInfoParser extends UDF{
// 1,zhangsan:18-1999063117:30:00-beijing
public String evaluate(String line,int index) {String newLine = line.replaceAll(",", "\001").replaceAll(":", "\001").replaceAll("-", "\001");
StringBuilder sb = new StringBuilder();
String[] split = newLine.split("\001");
StringBuilder append = sb.append(split[0])
.append("\t")
.append(split[1])
.append("\t")
.append(split[2])
.append("\t")
.append(split[3].substring(0, 8))
.append("\t")
.append(split[3].substring(8, 10)).append(split[4]).append(split[5])
.append("\t")
.append(split[6]);
String res = append.toString();
return res.split("\t")[index];
}
}
2、将 java 类打成 jar 包: d:/up.jar
3、上传 jar 包到 hive 所在的机器上 /root/up.jar
4、在 hive 的提示符中添加 jar 包
hive> add jar /root/up.jar;
5、创建一个 hive 的自定义函数名 跟 写好的 jar 包中的 java 类对应
hive> create temporary function parse_user_info as 'com.doit.hive.udf.UserInfoParser';