Golang 正则表达式(regexp)

42次阅读

共计 4791 个字符,预计需要花费 12 分钟才能阅读完成。

Go 内置了(regexp 包)对正则表达式的支持,这里是一般的正则表达式常规用法的例子。
示例:
package main

import (
“bytes”
“fmt”
“regexp”
)

func main() {
// 是否匹配字符串
// . 匹配任意一个字符,* 匹配零个或多个,优先匹配更多 (贪婪)
match, _ := regexp.MatchString(“H(.*)d!”, “Hello World!”)
fmt.Println(match) //true
// 或
match, _ = regexp.Match(“H(.*)d!”, []byte(“Hello World!”))
fmt.Println(match) //true
// 或通过 `Compile` 来使用一个优化过的正则对象
r, _ := regexp.Compile(“H(.*)d!”)
fmt.Println(r.MatchString(“Hello World!”)) //true

// 这个方法返回匹配的子串
fmt.Println(r.FindString(“Hello World! world”)) //Hello World!
// 同上
fmt.Println(string(r.Find([]byte(“Hello World!”)))) //Hello World!

// 这个方法查找第一次匹配的索引
// 的起始索引和结束索引,而不是匹配的字符串
fmt.Println(r.FindStringIndex(“Hello World! world”)) //[0 12]

// 这个方法返回全局匹配的字符串和局部匹配的字符,比如
// 这里会返回匹配 `H(.*)d!` 的字符串
// 和匹配 `(.*)` 的字符串
fmt.Println(r.FindStringSubmatch(“Hello World! world”)) //[Hello World! ello Worl]

// 和上面的方法一样,不同的是返回全局匹配和局部匹配的
// 起始索引和结束索引
fmt.Println(r.FindStringSubmatchIndex(“Hello World! world”)) //[0 12 1 10]
// 这个方法返回所有正则匹配的字符,不仅仅是第一个
fmt.Println(r.FindAllString(“Hello World! Held! world”, -1)) //[Hello World! Held!]

// 这个方法返回所有全局匹配和局部匹配的字符串起始索引, 只匹配最大的串
// 和结束索引
fmt.Println(r.FindAllStringSubmatchIndex(“Hello World! world”, -1)) //[[0 12 1 10]]
fmt.Println(r.FindAllStringSubmatchIndex(“Hello World! Held! world”, -1)) //[[0 18 1 16]]

// 为这个方法提供一个正整数参数来限制匹配数量
res, _ := regexp.Compile(“H([a-z]+)d!”)
fmt.Println(res.FindAllString(“Hello World! Held! Hellowrld! world”, 2)) //[Held! Hellowrld!]

fmt.Println(r.FindAllString(“Hello World! Held! world”, 2)) //[Hello World! Held!]
// 注意上面两个不同,第二参数是一最大子串为单位计算。

// regexp 包也可以用来将字符串的一部分替换为其他的值
fmt.Println(r.ReplaceAllString(“Hello World! Held! world”, “html”)) //html world

// `Func` 变量可以让你将所有匹配的字符串都经过该函数处理
// 转变为所需要的值
in := []byte(“Hello World! Held! world”)
out := r.ReplaceAllFunc(in, bytes.ToUpper)
fmt.Println(string(out))

// 在 b 中查找 reg 中编译好的正则表达式,并返回第一个匹配的位置
// {起始位置, 结束位置}
b := bytes.NewReader([]byte(“Hello World!”))
reg := regexp.MustCompile(`\w+`)
fmt.Println(reg.FindReaderIndex(b)) //[0 5]

// 在 字符串 中查找 r 中编译好的正则表达式,并返回所有匹配的位置
// {{起始位置, 结束位置}, {起始位置, 结束位置}, …}
// 只查找前 n 个匹配项,如果 n < 0,则查找所有匹配项

fmt.Println(r.FindAllIndex([]byte(“Hello World!”), -1)) //[[0 12]]
// 同上
fmt.Println(r.FindAllStringIndex(“Hello World!”, -1)) //[[0 12]]

// 在 s 中查找 re 中编译好的正则表达式,并返回所有匹配的内容
// 同时返回子表达式匹配的内容
// {
// {完整匹配项, 子匹配项, 子匹配项, …},
// {完整匹配项, 子匹配项, 子匹配项, …},
// …
// }
// 只查找前 n 个匹配项,如果 n < 0,则查找所有匹配项
reg = regexp.MustCompile(`(\w)(\w)+`) //[[Hello H o] [World W d]]
fmt.Println(reg.FindAllStringSubmatch(“Hello World!”, -1)) //[[Hello H o] [World W d]]

// 将 template 的内容经过处理后,追加到 dst 的尾部。
// template 中要有 $1、$2、${name1}、${name2} 这样的“分组引用符”
// match 是由 FindSubmatchIndex 方法返回的结果,里面存放了各个分组的位置信息
// 如果 template 中有“分组引用符”,则以 match 为标准,
// 在 src 中取出相应的子串,替换掉 template 中的 $1、$2 等引用符号。
reg = regexp.MustCompile(`(\w+),(\w+)`)
src := []byte(“Golang,World!”) // 源文本
dst := []byte(“Say: “) // 目标文本
template := []byte(“Hello $1, Hello $2”) // 模板
m := reg.FindSubmatchIndex(src) // 解析源文本
// 填写模板,并将模板追加到目标文本中
fmt.Printf(“%q”, reg.Expand(dst, template, src, m))
// “Say: Hello Golang, Hello World”

// LiteralPrefix 返回所有匹配项都共同拥有的前缀(去除可变元素)
// prefix:共同拥有的前缀
// complete:如果 prefix 就是正则表达式本身,则返回 true,否则返回 false
reg = regexp.MustCompile(`Hello[\w\s]+`)
fmt.Println(reg.LiteralPrefix())
// Hello false
reg = regexp.MustCompile(`Hello`)
fmt.Println(reg.LiteralPrefix())
// Hello true

text := `Hello World! hello world`
// 正则标记“非贪婪模式”(?U)
reg = regexp.MustCompile(`(?U)H[\w\s]+o`)
fmt.Printf(“%q\n”, reg.FindString(text)) // Hello
// 切换到“贪婪模式”
reg.Longest()
fmt.Printf(“%q\n”, reg.FindString(text)) // Hello Wo

// 统计正则表达式中的分组个数(不包括“非捕获的分组”)
fmt.Println(r.NumSubexp()) //1

// 返回 r 中的“正则表达式”字符串
fmt.Printf(“%s\n”, r.String())

// 在 字符串 中搜索匹配项,并以匹配项为分割符,将 字符串 分割成多个子串
// 最多分割出 n 个子串,第 n 个子串不再进行分割
// 如果 n < 0,则分割所有子串
// 返回分割后的子串列表
fmt.Printf(“%q\n”, r.Split(“Hello World! Helld! hello”, -1)) //[“” ” hello”]

// 在 字符串 中搜索匹配项,并替换为 repl 指定的内容
// 如果 rep 中有“分组引用符”($1、$name),则将“分组引用符”当普通字符处理
// 全部替换,并返回替换后的结果
s := “Hello World, hello!”
reg = regexp.MustCompile(`(Hell|h)o`)
rep := “${1}”
fmt.Printf(“%q\n”, reg.ReplaceAllLiteralString(s, rep)) //”${1} World, hello!”

// 在 字符串 中搜索匹配项,然后将匹配的内容经过 repl 处理后,替换 字符串 中的匹配项
// 如果 repb 的返回值中有“分组引用符”($1、$name),则将“分组引用符”当普通字符处理
// 全部替换,并返回替换后的结果
ss := []byte(“Hello World!”)
reg = regexp.MustCompile(“(H)ello”)
repb := []byte(“$0$1”)
fmt.Printf(“%s\n”, reg.ReplaceAll(ss, repb))
// HelloH World!

fmt.Printf(“%s\n”, reg.ReplaceAllFunc(ss,
func(b []byte) []byte {
rst := []byte{}
rst = append(rst, b…)
rst = append(rst, “$1″…)
return rst
}))
// Hello$1 World!

}

小结:
1、
r, _ := regexp.Compile(“H(.*)d!”)
可用一下代替
r := regexp.MustCompile(“H(.*)d!”)
两者区别 MustCompile 少一个返回值 err
看源码
// Compile parses a regular expression and returns, if successful,
// a Regexp object that can be used to match against text.
//…
// For POSIX leftmost-longest matching, see CompilePOSIX.
func Compile(expr string) (*Regexp, error) {
return compile(expr, syntax.Perl, false)
}

// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
regexp, err := Compile(str)
if err != nil {
panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
}
return regexp
}
2、regexp 的处理 byte 的方法都有个 string 方法对应,两者功能一样。
例如:
regexp.Match()

regexp.MatchString()
links
目录

正文完
 0