共计 4151 个字符,预计需要花费 11 分钟才能阅读完成。
一、简介
迪克斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止,就像剥洋葱一样,所以它也属于广度优先搜索。
二、算法正确性证明
老哥们自己找吧,网上没找到一篇能让我完全满意的证明
三、JAVA 代码实现
public class Dijkstra {
public static final int INF = 65535;
public static final String RIGHT_ARROW = "-->";
public static final String LEFT_ARROW = "<--";
public static void main(String[] args) {getShortestDistance(new int[][]{{0, INF, 10, INF, 30, 100},
{INF, 0, 5, INF, INF, INF},
{INF, INF, 0, 50, INF, INF},
{INF, INF, INF, 0, INF, 10},
{INF, INF, INF, 20, 0, 60},
{INF, INF, INF, INF, INF, 0}
}, 0);
}
private static void getShortestDistance(int[][] matrix, int start) {boolean[] visited = new boolean[matrix.length]; // 节点是否已被访问
int[] distance = new int[matrix.length]; // 距离数组
int[] pre = new int[matrix.length]; // 前驱数组,用于记录路径信息
// 初始化距离数组、前驱数组,访问数组
for (int j = 0; j < matrix[start].length; j++) {distance[j] = matrix[start][j];
if (distance[j] == INF) {pre[j] = -1;
} else {pre[j] = start;
}
visited[j] = false;
}
// 初始节点设置为已访问
visited[start] = true;
int k = start;
while (k != -1) {visited[k] = true;
for (int j = 0; j < matrix[k].length; j++) {if (matrix[k][j] + distance[k] < distance[j]) {distance[j] = matrix[k][j] + distance[k];
pre[j] = k;
}
}
// 获取下一个距离起始节点最近的未被访问的节点
k = getNextNodeIndex(visited, distance);
}
// 打印最短距离和路径
printShortestPath(distance, pre, start);
}
private static void printShortestPath(int[] distance, int[] pre, int start) {for (int i = 0; i < distance.length; i++) {StringBuilder sb = new StringBuilder();
sb.append(getNodeName(start));
sb.append(RIGHT_ARROW);
sb.append(getNodeName(i));
if (distance[i] < INF) {sb.append("最短距离:");
sb.append(distance[i]);
sb.append("\t");
} else {sb.append("不通");
continue;
}
sb.append("最短路径");
sb.append(getNodeName(i));
sb.append(LEFT_ARROW);
int j = i;
do {j = pre[j];
sb.append(getNodeName(j));
sb.append(LEFT_ARROW);
} while (pre[j] != -1 && j != start);
System.out.println(sb.substring(0, sb.lastIndexOf(LEFT_ARROW)));
}
}
private static int getNextNodeIndex(boolean[] visited, int[] distance) {
int min = INF;
int k = -1;
for (int i = 0; i < distance.length; i++) {if (distance[i] < min && !visited[i]) {min = distance[i];
k = i;
}
}
return k;
}
private static String getNodeName(int nodeIdx) {return "v" + (nodeIdx + 1);
}
结果打印:v1-->v1 最短距离:0 最短路径 v1<--v1
v1-->v3 最短距离:10 最短路径 v3<--v1
v1-->v4 最短距离:50 最短路径 v4<--v5<--v1
v1-->v5 最短距离:30 最短路径 v5<--v1
v1-->v6 最短距离:60 最短路径 v6<--v4<--v5<--v1
四、扩展
我另外想了一种方法来实现寻找最短路径,类似迪克斯特拉算法,只不过将广度优先搜索变为深度优先搜索
public class DetectShotestDistance {
public static final int INF = 65535;
public static final String RIGHT_ARROW = "-->";
public static final String LEFT_ARROW = "<--";
public static void main(String[] args) {getShortestDistance(new int[][]{{0, INF, 10, INF, 30, 100},
{INF, 0, 5, INF, INF, INF},
{INF, INF, 0, 50, INF, INF},
{INF, INF, INF, 0, INF, 10},
{INF, INF, INF, 20, 0, 60},
{INF, INF, INF, INF, INF, 0}
}, 0);
}
private static void getShortestDistance(int[][] matrix, int start) {Set visited = new HashSet<>();
int[] distance = new int[matrix.length];
int[] pre = new int[matrix.length];
// 初始化距离数组和路径数组
for (int j = 0; j < matrix[start].length; j++) {distance[j] = matrix[start][j];
if (distance[j] == INF) {pre[j] = -1;
} else {pre[j] = start;
}
}
int curIdx = start;
visited.add(curIdx);
int nextIdx = getNextNodeIndex(start, matrix, visited, distance, pre);
while (nextIdx != -1) {visited.add(nextIdx);
if (matrix[curIdx][nextIdx] + distance[curIdx] < distance[nextIdx]) {distance[nextIdx] = matrix[curIdx][nextIdx] + distance[curIdx];
}
curIdx = nextIdx;
nextIdx = getNextNodeIndex(nextIdx, matrix, visited, distance, pre);
}
for (int i = 0; i < distance.length; i++) {StringBuilder sb = new StringBuilder();
sb.append(getNodeName(start));
sb.append(RIGHT_ARROW);
sb.append(getNodeName(i));
if (distance[i] < INF) {sb.append("最短距离:");
sb.append(distance[i]);
sb.append("\t");
} else {sb.append("不通");
continue;
}
sb.append("最短路径");
sb.append(getNodeName(i));
sb.append(LEFT_ARROW);
int j = i;
do {j = pre[j];
sb.append(getNodeName(j));
sb.append(LEFT_ARROW);
} while (pre[j] != -1 && j != start);
System.out.println(sb.substring(0, sb.lastIndexOf(LEFT_ARROW)));
}
}
private static int getNextNodeIndex(int curIdx, int[][] matrix, Set visited, int[] distance, int[] pre) {
int min = INF;
int minIdx = -1;
for (int j = 0; j < matrix[curIdx].length; j++) {if (matrix[curIdx][j] < min && !visited.contains(j)) {min = matrix[curIdx][j];
minIdx = j;
pre[minIdx] = curIdx;
}
}
if (minIdx == -1) {for (int j = 0; j < distance.length; j++) {if (distance[j] != INF && !visited.contains(j)) {return j;}
}
}
return minIdx;
}
private static String getNodeName(int nodeIdx) {return "v" + (nodeIdx + 1);
}
结果打印:v1-->v1 最短距离:0 最短路径 v1<--v1
v1-->v3 最短距离:10 最短路径 v3<--v1
v1-->v4 最短距离:50 最短路径 v4<--v5<--v1
v1-->v5 最短距离:30 最短路径 v5<--v1
v1-->v6 最短距离:60 最短路径 v6<--v4<--v5<--v1
正文完