关于java:Log4j2基于Disruptor异步日志优化部分源码学习

一、前言

  最近遇到了个log4j2写日志导致线程阻塞的问题(多亏了开发小哥日志打的多,不然就没有上面这一系列骚操作)。

大抵形容下过后的状况(内网限度,没法把现场货色拿进去,只能口述了):

log4j2配置状况: 同时配置了3个RollingRandomAccessFile,别离针对SQL语句、INFO日志、ERROR日志,大抵的配置如下:

<RollingRandomAccessFile name="RandomAccessFile" fileName="${FILE_PATH}/async-log4j2.log" append="false"
                  filePattern="${FILE_PATH}/rollings/async-testLog4j2-%d{yyyy-MM-dd}_%i.log.gz">
    <PatternLayout>
        <Pattern>${LOG_PATTERN}</Pattern>
    </PatternLayout>
    <ThresholdFilter level="info" onMatch="ACCEPT" onMismatch="DENY"/>
    <Policies>
        <TimeBasedTriggeringPolicy interval="1" modulate="true" />
        <SizeBasedTriggeringPolicy size="450MB"/>
    </Policies>
    <DefaultRolloverStrategy max="15" compressionLevel="0"/>
</RollingRandomAccessFile>

问题形容: 1、32C的机器压缩日志占用30%+的资源;2、tomcat主线程全副50%+都是park状态,线程状态大抵如下;

过后针对log4j2给的优化倡议是: 1、配置immediateFlush=false 2、将filePattern对应的gz后缀去掉(因为对应的compressionLevel=0,基本不压缩),是否就不会调用JDK的Deflater进行压缩。【猜想,也是前面还原现场的起因之一,想亲自验证一下】

二、本地复现&局部源码学习

  问题复现的过程也是蛮艰苦的,遇到各种问题。上面记录的是我本地复现时遇到的问题以及解决办法,附带一些log4j2基于disruptor的局部源码学习,篇幅可能会稍长。

环境:Macbook Pro x86(16C32G)、jdk1.8、log4j-core 2.12.1、log4j-api 2.12.1、disruptor 3.4.2

测试代码(启动50线程不间断地写日志【现场零碎波及200个Tomcat线程】):

public class TestLog4j {

    private static Logger logger = LogManager.getLogger(TestLog4j.class);
    private final ThreadPoolExecutor executor;

    public TestLog4j() {
        this.executor = new ThreadPoolExecutor(50, 50,
                60, TimeUnit.SECONDS,
                new ArrayBlockingQueue(1000),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

    public void testLog() {
        for (int i = 0; i < this.executor.getCorePoolSize(); i++) {
            this.executor.execute(() -> {
                while (true) {
                    logger.info("测试日志--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞" +
                            "--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞" +
                            "--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞--麻利麻利哄快阻塞");
                }
            });
        }
    }

    public static void main(String[] args) {
        new TestLog4j().testLog();
    }
}

局部log4j2.xml配置(将备份的压缩日志大小改小至100M,备份文件数量减少至100):

<appenders>
    <RollingRandomAccessFile name="RandomAccessFile" fileName="${FILE_PATH}/async-log4j2.log" append="false"
                      filePattern="${FILE_PATH}/rollings/async-testLog4j2-%d{yyyy-MM-dd}_%i.log.gz">
        <PatternLayout>
            <Pattern>${LOG_PATTERN}</Pattern>
        </PatternLayout>
        <ThresholdFilter level="info" onMatch="ACCEPT" onMismatch="DENY"/>
        <Policies>
            <TimeBasedTriggeringPolicy interval="1" modulate="true" />
            <SizeBasedTriggeringPolicy size="100MB"/>
        </Policies>
        <DefaultRolloverStrategy max="100" compressionLevel="0"/>
    </RollingRandomAccessFile>
</appenders>
<loggers>
    <!--disruptor异步日志-->
    <AsyncLogger name="DisruptorLogger" level="info" includeLocation="false">
        <AppenderRef ref="RandomAccessFile"/>
    </AsyncLogger>
    <Asyncroot level="info" includeLocation="false">
        <appender-ref ref="RandomAccessFile"/>
    </Asyncroot>
</loggers>

(一)线程阻塞-Blocked

  所有准备就绪,点击运行,jps+jstack+jmap,一片自信满满。关上thread dump的那一刻,我就懵了,一片红红的blocked,此时应上问号脸。线程状况是这样的:

感觉和预期差的有点大啊,看样子是在往disruptor的RingBuffer里写日志的时候就blocked了,能够比照一下之前线程的线程状况,是没有blocked的。内存dump中如同发现了不一样的:

RingBuffer只有4096,印象里没有设置的话默认是256*1024。

(1)RingBuffer大小

org.apache.logging.log4j.core.async包下的DisruptorUtil类里定义了很多Disruptor相干的配置属性。
其中有三个RingBuffer size的动态属性,还有一个获取RingBufferSize的办法calculateRingBufferSize

// DisruptorUtil类
private static final int RINGBUFFER_MIN_SIZE = 128;
private static final int RINGBUFFER_DEFAULT_SIZE = 256 * 1024;
private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4 * 1024;

static int calculateRingBufferSize(final String propertyName) {
    // 如果ENABLE_THREADLOCALS为true,则应用RINGBUFFER_NO_GC_DEFAULT_SIZE即4096大小的size
    int ringBufferSize = Constants.ENABLE_THREADLOCALS ? RINGBUFFER_NO_GC_DEFAULT_SIZE : RINGBUFFER_DEFAULT_SIZE;
    // 获取配置文件中自定配置大小,如果没有返回下面ringBufferSize
    final String userPreferredRBSize = PropertiesUtil.getProperties().getStringProperty(propertyName,
            String.valueOf(ringBufferSize));
    try {
        int size = Integer.parseInt(userPreferredRBSize);
        // 自定义配置大小小于128,则将size从新赋值为128
        if (size < RINGBUFFER_MIN_SIZE) {
            size = RINGBUFFER_MIN_SIZE;
            LOGGER.warn("Invalid RingBufferSize {}, using minimum size {}.", userPreferredRBSize,
                    RINGBUFFER_MIN_SIZE);
        }
        // 自定义配置大小从新赋值给ringBufferSize
        ringBufferSize = size;
    } catch (final Exception ex) {
        LOGGER.warn("Invalid RingBufferSize {}, using default size {}.", userPreferredRBSize, ringBufferSize);
    }
    return Integers.ceilingNextPowerOfTwo(ringBufferSize);
}

而后看下Constants.ENABLE_THREADLOCALS就水落石出了:

/**
     * {@code true} if we think we are running in a web container, based on the boolean value of system property
     * "log4j2.is.webapp", or (if this system property is not set) whether the  {@code javax.servlet.Servlet} class
     * is present in the classpath.
     */
    public static final boolean IS_WEB_APP = PropertiesUtil.getProperties().getBooleanProperty(
            "log4j2.is.webapp", isClassAvailable("javax.servlet.Servlet"));

    /**
     * Kill switch for object pooling in ThreadLocals that enables much of the LOG4J2-1270 no-GC behaviour.
     * <p>
     * {@code True} for non-{@link #IS_WEB_APP web apps}, disable by setting system property
     * "log4j2.enable.threadlocals" to "false".
     * </p>
     */
    public static final boolean ENABLE_THREADLOCALS = !IS_WEB_APP && PropertiesUtil.getProperties().getBooleanProperty(
            "log4j2.enable.threadlocals", true);

大抵意思就是,如果利用不是web利用【判断是否存在javax.servlet.Servlet这个类】,就默认应用threadlocals这种模式,即我本地程序的RingBuffer就被设置成了4096。

正文中也提到,能够设置jvm运行时参数,不应用threadlocals这种模式,能够这么设置:-Dlog4j2.enable.threadlocals=false

  • Garbage-free logging

    • 大部分日志框架,包含log4j会在失常日志输入的时候创立长期对象( log event objects, Strings, char arrays, byte arrays…),这会减少GC的压力;
    • 从Log4j2.6开始,log4j默认应用Garbage-free这种模式。threadlocals是Garbage-free的其中一种实现,在ThreadLocal根底上,会重用对象(例如log event objects);
    • 然而在web利用中,threadlocals这种模式很容易导致ThreadLocal的内存透露,所以在web利用中,不会应用threadlocals模式;
    • 一些不齐全Garbage-free的性能,不依赖ThreadLocal,会将log events对象转换成text,继而将text间接编码成bytes存入可重用的ByteBuffer,而不须要创立零时的Strings, char arrays and byte arrays等对象。

      • 上述性能默认开始(log4j2.enableDirectEncoders默认为true),在多线程环境下,日志性能可能会不太现实,因为在应用共享buffer的时候是同步操作。所以思考性能的话,倡议应用异步日志。

    参考:https://logging.apache.org/lo…,Garbage-free Logging

(2)阻塞的外围办法enqueue

  次要的阻塞点org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptorenqueue办法

private void enqueue(final LogEvent logEvent, final AsyncLoggerConfig asyncLoggerConfig) {
    // 如果synchronizeEnqueueWhenQueueFull为true,进入阻塞办法
    if (synchronizeEnqueueWhenQueueFull()) {
        synchronized (queueFullEnqueueLock) {
            disruptor.getRingBuffer().publishEvent(translator, logEvent, asyncLoggerConfig);
        }
    } else {
        disruptor.getRingBuffer().publishEvent(translator, logEvent, asyncLoggerConfig);
    }
}
private boolean synchronizeEnqueueWhenQueueFull() {
    return DisruptorUtil.ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL
            // Background thread must never block
            && backgroundThreadId != Thread.currentThread().getId();
}

DisruptorUtil中对于SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL的两个动态属性:

// 默认都是true
static final boolean ASYNC_LOGGER_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL = PropertiesUtil.getProperties()
        .getBooleanProperty("AsyncLogger.SynchronizeEnqueueWhenQueueFull", true);
static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL = PropertiesUtil.getProperties()
        .getBooleanProperty("AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull", true);

从源码能够看到,默认enqueue办法就是走阻塞的分支代码。如果要设置成非阻塞的运行形式,须要手动配置参数,办法如下:
新建log4j2.component.properties文件,增加如下配置:
其余可配置参数详见:https://logging.apache.org/lo…

# 实用<root> and <logger>加
# Dlog4j2.contextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector配置的异步日志
# 作用于org.apache.logging.log4j.core.async.AsyncLoggerDisruptor
AsyncLogger.SynchronizeEnqueueWhenQueueFull=false
# 实用<asyncRoot> & <asyncLogger>配置的异步日志
# 作用于org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor
AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull=false
  • note:

    1. 异步日志配置形式不同的话,会应用不同的解决类(AsyncLoggerConfigDisruptorAsyncLoggerDisruptor),因而配置参数得相匹配;
    2. SynchronizeEnqueueWhenQueueFull设置成false,会导致CPU使用率飙升,这个应该也是默认为true的起因。能够看上面本地试验的后果,差不多是10倍的差距。【官网文档中是不倡议设置成false的,除非绑定CPU核。】

      • true时的CPU应用「159%」:
      • false时的CPU应用「1565%」:

CPU高的次要起因:
enqueue办法处没有阻塞的状况下,所有的线程都会进入到MultiProducerSequencernext办法。这个办法是获取RingBuffer的可写区间的,办法中有个while死循环不断的做CAS操作。在LockSupport.parkNanos(1)处原作者这边也给了疑难:要不要沿用WaitStrategy的期待策略。

@Override
public long next(int n)
{
    if (n < 1)
    {
        throw new IllegalArgumentException("n must be > 0");
    }
    long current;
    long next;
    do
    {
        current = cursor.get();
        next = current + n;
        long wrapPoint = next - bufferSize;
        long cachedGatingSequence = gatingSequenceCache.get();
        if (wrapPoint > cachedGatingSequence || cachedGatingSequence > current)
        {
            long gatingSequence = Util.getMinimumSequence(gatingSequences, current);
            if (wrapPoint > gatingSequence)
            {
                LockSupport.parkNanos(1); // TODO, should we spin based on the wait strategy?
                continue;
            }
            gatingSequenceCache.set(gatingSequence);
        }
        else if (cursor.compareAndSet(current, next))
        {
            break;
        }
    }
    while (true);
    return next;
}

至此,根本还原现场的状况:

(3)异步日志反复配置的问题

  这是集体的好奇之举。当即应用了Log4jContextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector,又在log4j2.xml中配置了<asyncRoot>标签,日志对象将会多一次两头传递:
app -> RingBuffer-1 -> thread a -> RingBuffer-2 -> thread b -> disk
这会带来不必要的性能损耗。

看下这种状况的线程dump就了然了:

(二)日志压缩

尝试去掉gz后缀名,优化压缩的资源耗费问题。

  • 批改前,CPU采样状况,在资源占用前列能够显著看到压缩的相干办法:
  • 去掉gz后缀和压缩级别参数,曾经找不到压缩相干的办法了:

验证了之前的猜测,RollingFile其实就是依据文件后缀来判断是否进行压缩的。

(三)生产线程(IO线程)的WaitStrategy

  即log4j2.asyncLoggerWaitStrategylog4j2.asyncLoggerConfigWaitStrategy 这两配置,次要用来配置期待日志事件的I/O线程的策略。
官网文档中给出了4种策略:Block, Timeout「默认」, Sleep, Yield
然而源码中其实有5种:

// org.apache.logging.log4j.core.async.DisruptorUtil
static WaitStrategy createWaitStrategy(final String propertyName, final long timeoutMillis) {
    final String strategy = PropertiesUtil.getProperties().getStringProperty(propertyName, "TIMEOUT");
    LOGGER.trace("property {}={}", propertyName, strategy);
    final String strategyUp = strategy.toUpperCase(Locale.ROOT); // TODO Refactor into Strings.toRootUpperCase(String)
    switch (strategyUp) { // TODO Define a DisruptorWaitStrategy enum?
    case "SLEEP":
        return new SleepingWaitStrategy();
    case "YIELD":
        return new YieldingWaitStrategy();
    case "BLOCK":
        return new BlockingWaitStrategy();
    case "BUSYSPIN":
        return new BusySpinWaitStrategy();
    case "TIMEOUT":
        return new TimeoutBlockingWaitStrategy(timeoutMillis, TimeUnit.MILLISECONDS);
    default:
        return new TimeoutBlockingWaitStrategy(timeoutMillis, TimeUnit.MILLISECONDS);
    }
}

多了一个BusySpinWaitStrategy策略「JDK9才真正实用,9以下就是简略的死循环」

这里不一一介绍,次要是disruptor相干的内容「具体内容能够参考这片文章,写的还能够:https://blog.csdn.net/boling_…」,联合log4j2说几点:

  • 默认的TimeoutBlockingWaitStrategyBlockingWaitStrategy策略都是基于ReentrantLock实现的,因为底层是基于AQS,在运行过程中会创立AQS的Node对象,不合乎Garbage-free的思维;
  • SLEEP是Garbage-free的,且官网文档提到,相较于BLOCK实用于资源受限的环境,SLEEP均衡了性能和CPU资源两方面因素。

三、总结

  对于log4j2的性能优化,总结以下几点「前面有补充会增加到这里」

  1. 配置滚动日志的时候,若不须要压缩日志,filePattern的文件名不要以gz结尾;
  2. 应用Disruptor异步日志的时候,不要同时应用Log4jContextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector<asyncRoot>
  3. RollingRandomAccessFile配置immediateFlush="false"属性,这样让I/O线程批量刷盘(这里其实波及到native办法调用的性能问题);
  4. 能够联合资源状况是否要配置SynchronizeEnqueueWhenQueueFullfalse
  5. 结合实际状况是否要更改I/O线程的WaitStrategy
  6. 若日志能够抛弃,能够配置抛弃策略,配置log4j2.asyncQueueFullPolicy=Discardlog4j2.discardThreshold=INFO「默认」,当队列满时,INFO, DEBUGTRACE级别的日志会被抛弃;

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理