5分钟了解lucene全文索引

27次阅读

共计 2403 个字符,预计需要花费 7 分钟才能阅读完成。

一、Lucene 介绍及应用

Apache Lucene 是当下最为流行的开源全文检索工具包,基于 JAVA 语言编写。

目前基于此工具包开源的搜索引擎,成熟且广为人知的有 Solr 和 Elasticsearch。2010 年后 Lucene 和 Solr 两个项目由同一个 Apache 软件基金会的开发团队制作,所以通常我们看到的版本都是同步的。二者的区别是 Lucene 是工具包,而 Solr 是基于 Lucene 制作的企业级搜索应用。另外,我们常用的 Eclipse,帮助系统的搜索功能也是基于 Lucene 实现的。

二、Lucene 的两项工作

在我们的生活物品中,汉语字典与全文索引是很相似的。我们拿拼音查字法举例,首先我们通过拼音找到我们要查字的页数,然后翻到该页,阅读这个字的详细解释。

在上面的例子中,我们提到了两个要素:一个是字典,另一个是查字的过程。对应到 Lucene 的功能上,一个是我们要建立一个字典,这个过程叫做建立索引,另一个是根据搜索词基于索引进行查询。

2.1 建立索引

1)文档的准备(Document)

文档就是指我们要去搜索的原文。

2)分词组件(Tokenizer)

将第一步的文档进行词语切割,去除标点,去除无用词,比如“是”,“的”等。常用的开源中文分词组件有 MMSEG4J、IKAnalyzer 等。切割后的词语我们称为词元(Token)。

3)语言处理(Linguistic Processor)

将上一步的获得的词元进行处理,比如英文的大写转小写,复数变单数,过去时分词转原形等。此时得到的结果,被称作词(Term)

4)索引组件

索引组件将上步得到的词,生成索引和词典,存储到磁盘上。索引组件先将 Term 变成字典,然后对字典进行排序,排序后对相同的词进行合并,形成倒排列表。每个词在列表中存储了对应的文档 Id(Document Frequency)以及这个词在这个文档中出现了几次(Term Frequency)。

2.2 搜索

1)输入查询词

2)词法分析及语言处理

对输入的词进行拆分,关键字识别 (AND,NOT) 等。对拆分的词元进行语言处理,与建立字典时语言处理的过程相同。由关键字与处理后的词生成语法树。

3)搜索索引,获得符合语法树的文档

如 A and B not C 形成的语法树,则会搜索包含 A B C 的文档列表,然后用 A 和 B 的文档列表做交集,结果集与 C 做差集,得到的结果,就是符合搜索条件的文档列表

4)根据相关性,对搜索结果排序

通过向量空间模型的算法,得到结果的相关性。比较简单的实现描述如下:在建立索引的时候,我们得到了 Document Frequency 和 Term Frequency,Term Frequency 越高,说明文档的相关性越高;Document Frequency 越高,说明相关性越弱。这个算法可以自己进行实现。

5)根据上面的排序结果,返回文档。

三、索引结构

Lucene 的索引结构是有层次结构的。我们以下图为例

3.1 索引(Index)

如果拿数据库做类比,索引类似于数据库的表。

在 Lucene 中一个索引是放在一个文件夹中的。所以可以理解索引为整个文件夹的内容。

3.2 段(Segment)

如果拿数据库做类比,段类似于表的分区。

索引下面引入了 Segment 的概念,一个索引下可以多个段。当 flush 或者 commit 时生成段文件。截图中有 0,1 两个段。segments.gen 和 segments_5 是段的元数据文件,它们保存了段的属性信息。其他的文件对应的就是各段的文件,稍后会详细说明各文件的用处。

索引的写入是顺序的,只能被追加,不能被修改。当索引要删除时,在.del 文件中写入对应的 docId。查询的时候会过滤到此 docId。另外索引的修改,是对 Document 进行删除后做的追加。这种设计保证了高吞吐量。

分段的设计能保证查询的高效,当段太大时,查询会产生很大的 IO 消耗。段太小,则需要查询的段太多。所以 lucene 对段进行了合并,另外删除的数据也是在合并过程中过滤掉的。4.0 之前的默认的合并策略为 LogMergePolicy,这个策略会合并小于指定值的相邻段,如果两个相邻段,一个大小为 1G,一个大小为 1k,则会重写 1G 的文件会占用很大资源。4.0 之后默认策略改为了 TieredMergePolicy,这个策略会先按分段大小进行排序,对段进行删除比计算,优先合并小的分段。当系统闲暇的时候,才对大分段进行合并。

3.3 文档(Document)

如果拿数据库做类比,文档类似于数据的一行。

Document 是索引的基本单位。一个段可以有多个 Document

3.4 域(Field)

如果拿数据库做类比,域相当于表的字段。

Doument 里可以有多个 Field。Lucene 提供多种不同类型的 Field,例如 StringField、TextField、LongFiled 或 NumericDocValuesField 等。

3.5 词(Term)

Term 是索引的最小单位。Term 是由 Field 经过 Analyzer(分词)产生。

四、段的文件说明

第三章节详细描述了段的设计和合并策略,以下详细讲解一些段文件的内容。

segments_N 保存了此索引包含多少个段,每个段包含多少篇文档。

*.fnm

保存了此段包含了多少个域,每个域的名称及索引方式。

*.fdx,*.fdt

保存了此段包含的所有文档,每篇文档包含了多少域,每个域保存了那些信息。

*.tvx,*.tvd,*.tvf

保存了此段包含多少文档,每篇文档包含了多少域,每个域包含了多少词,每个词的字符串,位置等信息。

*.tis,*.tii

保存了词典(Term Dictionary),也即此段包含的所有的词按字典顺序的排序。

*.frq

保存了倒排表,也即包含每个词的文档 ID 列表。

*.prx

保存了倒排表中每个词在包含此词的文档中的位置

*.del

前面讲段的时候有提到,用来是存储删掉文档 id 的。

作者:田梁

来源:宜信技术学院

正文完
 0