共计 25886 个字符,预计需要花费 65 分钟才能阅读完成。
背景
在数据分析中 pandas 举足轻重,学习 pandas 最好的方法就是看官方文档,以下是根据官方文档 10 Minutes to pandas 学习记录。(官方标题 10 分钟,感觉起码得半个小时吧)
在 pandas 中主要有两种数据类型,可以简单的理解为:
Series:一维数组
DateFrame:二维数组(矩阵)
有了大概的概念之后,开始正式认识 pandas:
首先要引入对应的包:
import numpy as np
import pandas as pd
新建对象 Object Creation
Series
可以通过传入一个 list 对象来新建 Series,其中空值为 np.nan:
s = pd.Series([1,3,4,np.nan,7,9])
s
Out[5]:
0 1.0
1 3.0
2 4.0
3 NaN
4 7.0
5 9.0
dtype: float64
pandas 会默认创建一列索引 index(上面的 0 -5)。我们也可以在创建时就指定索引:
pd.Series([1,3,4,np.nan,7,9], index=[1,1,2,2,’a’,4])
Out[9]:
1 1.0
1 3.0
2 4.0
2 NaN
a 7.0
4 9.0
dtype: float64
要注意的是,索引是可以重复的,也可以是字符。
DataFrame
新建一个 DataFrame 对象可以有多种方式:
通过传入一个 numpy 的数组、指定一个时间的索引以及一个列名。
dates = pd.date_range(‘20190101’, periods=6)
dates
Out[11]:
DatetimeIndex([‘2019-01-01’, ‘2019-01-02’, ‘2019-01-03’, ‘2019-01-04’,
‘2019-01-05’, ‘2019-01-06′],
dtype=’datetime64[ns]’, freq=’D’)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list(‘ABCD’))
df
Out[18]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
通过传入一个 dict 对象
df2 = pd.DataFrame({‘A’:1.,
‘B’:pd.Timestamp(‘20190101’),
‘C’:pd.Series(1, index=list(range(4)), dtype=’float32′),
‘D’:np.array([3]*4, dtype=’int32′),
‘E’:pd.Categorical([“test”, “tain”, “test”, “train”]),
‘F’:’foo’})
df2
Out[27]:
A B C D E F
0 1.0 2019-01-01 1.0 3 test foo
1 1.0 2019-01-01 1.0 3 tain foo
2 1.0 2019-01-01 1.0 3 test foo
3 1.0 2019-01-01 1.0 3 train foo
这里我们指定了不同的类型,可以通过如下查看:
df2.dtypes
Out[28]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
可以看出 DataFrame 和 Series 一样,在没有指定索引时,会自动生成一个数字的索引,这在后续的操作中十分重要。
查看 Viewing Data
查看开头几行或者末尾几行:
df.head()
Out[30]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
df.tail(3)
Out[31]:
A B C D
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
可以通过添加行数参数来输出,默认为输出 5 行。
查看索引和列名
df.index
Out[32]:
DatetimeIndex([‘2019-01-01’, ‘2019-01-02’, ‘2019-01-03’, ‘2019-01-04’,
‘2019-01-05’, ‘2019-01-06′],
dtype=’datetime64[ns]’, freq=’D’)
df.columns
Out[33]: Index([‘A’, ‘B’, ‘C’, ‘D’], dtype=’object’)
使用 DataFrame.to_numpy()转化为 numpy 数据。需要注意的是由于 numpy array 类型数据只可包含一种格式,而 DataFrame 类型数据可包含多种格式,所以在转换过程中,pandas 会找到一种可以处理 DateFrame 中国所有格式的 numpy array 格式,比如 object。这个过程会耗费一定的计算量。
df.to_numpy()
Out[35]:
array([[0.67162219, 0.78572584, 0.39243527, 0.87469243],
[-2.42070338, -1.11620768, -0.34607048, 0.78594081],
[1.36442543, -0.94764138, 2.38688005, 0.58537186],
[-0.48597971, -1.28145415, 0.35406263, -1.41885798],
[-1.12271697, -2.78904135, -0.79181242, -0.17434484],
[0.22159737, -0.75303807, -1.74125564, 0.28728004]])
df2.to_numpy()
Out[36]:
array([[1.0, Timestamp(‘2019-01-01 00:00:00’), 1.0, 3, ‘test’, ‘foo’],
[1.0, Timestamp(‘2019-01-01 00:00:00’), 1.0, 3, ‘tain’, ‘foo’],
[1.0, Timestamp(‘2019-01-01 00:00:00’), 1.0, 3, ‘test’, ‘foo’],
[1.0, Timestamp(‘2019-01-01 00:00:00’), 1.0, 3, ‘train’, ‘foo’]],
dtype=object)
上面 df 全部为 float 类型,所以转换会很快,而 df2 涉及多种类型转换,最后全部变成了 object 类型元素。
查看数据的简要统计结果
df.describe()
Out[37]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean -0.295293 -1.016943 0.042373 0.156680
std 1.356107 1.144047 1.396030 0.860725
min -2.420703 -2.789041 -1.741256 -1.418858
25% -0.963533 -1.240143 -0.680377 -0.058939
50% -0.132191 -1.031925 0.003996 0.436326
75% 0.559116 -0.801689 0.382842 0.735799
max 1.364425 0.785726 2.386880 0.874692
转置
df.T
Out[38]:
2019-01-01 2019-01-02 2019-01-03 2019-01-04 2019-01-05 2019-01-06
A 0.671622 -2.420703 1.364425 -0.485980 -1.122717 0.221597
B 0.785726 -1.116208 -0.947641 -1.281454 -2.789041 -0.753038
C 0.392435 -0.346070 2.386880 0.354063 -0.791812 -1.741256
D 0.874692 0.785941 0.585372 -1.418858 -0.174345 0.287280
按坐标轴排序,其中 axis 参数为坐标轴,axis 默认为 0,即横轴(对行排序),axis= 1 则为纵轴(对列排序);asceding 参数默认为 True,即升序排序,ascending=False 则为降序排序:
df.sort_index(axis=1)
Out[44]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
df.sort_index(axis=1, ascending=False)
Out[45]:
D C B A
2019-01-01 0.874692 0.392435 0.785726 0.671622
2019-01-02 0.785941 -0.346070 -1.116208 -2.420703
2019-01-03 0.585372 2.386880 -0.947641 1.364425
2019-01-04 -1.418858 0.354063 -1.281454 -0.485980
2019-01-05 -0.174345 -0.791812 -2.789041 -1.122717
2019-01-06 0.287280 -1.741256 -0.753038 0.221597
可见 df.sort_index(axis=1)是按列名升序排序,所以看起来没有变化,当设置 ascending=False 时,列顺序变成了 DCBA。
按数值排序:
df.sort_values(by=’B’)
Out[46]:
A B C D
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
2019-01-01 0.671622 0.785726 0.392435 0.874692
df.sort_values(by=’B’, ascending=False)
Out[47]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
筛选 Selection
获取某列
df[‘A’]
Out[49]:
2019-01-01 0.671622
2019-01-02 -2.420703
2019-01-03 1.364425
2019-01-04 -0.485980
2019-01-05 -1.122717
2019-01-06 0.221597
Freq: D, Name: A, dtype: float64
type(df.A)
Out[52]: pandas.core.series.Series
也可直接用 df.A,注意这里是大小写敏感的,这时候获取的是一个 Series 类型数据。
选择多行
df[0:3]
Out[53]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
df[‘20190102′:’20190104’]
Out[54]:
A B C D
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
通过一个 [] 会通过索引对行进行切片,由于前面设置了索引为日期格式,所以可以方便的直接使用日期范围进行筛选。
通过标签选择
选择某行
df.loc[dates[0]]
Out[57]:
A 0.671622
B 0.785726
C 0.392435
D 0.874692
Name: 2019-01-01 00:00:00, dtype: float64
选择指定行列的数据
df.loc[:, (‘A’, ‘C’)]
Out[58]:
A C
2019-01-01 0.671622 0.392435
2019-01-02 -2.420703 -0.346070
2019-01-03 1.364425 2.386880
2019-01-04 -0.485980 0.354063
2019-01-05 -1.122717 -0.791812
2019-01-06 0.221597 -1.741256
df.loc[‘20190102′:’20190105’, (‘A’, ‘C’)]
Out[62]:
A C
2019-01-02 -2.420703 -0.346070
2019-01-03 1.364425 2.386880
2019-01-04 -0.485980 0.354063
2019-01-05 -1.122717 -0.791812
传入第一个参数是行索引标签范围,第二个是列索引标签,: 代表全部。
选定某值
df.loc[‘20190102’, ‘A’]
Out[69]: -2.420703380445092
df.at[dates[1], ‘A’]
Out[70]: -2.420703380445092
可以通过 loc[]和 at[]两种方式来获取某值,但需要注意的是,由于行索引为 datetime 类型,使用 loc[]方式获取时,可直接使用 20190102 字符串来代替,而在 at[]中,必须传入 datetime 类型,否则会有报错:
df.at[‘20190102’, ‘A’]
File “pandas/_libs/index.pyx”, line 81, in pandas._libs.index.IndexEngine.get_value
File “pandas/_libs/index.pyx”, line 89, in pandas._libs.index.IndexEngine.get_value
File “pandas/_libs/index.pyx”, line 449, in pandas._libs.index.DatetimeEngine.get_loc
File “pandas/_libs/index.pyx”, line 455, in pandas._libs.index.DatetimeEngine._date_check_type
KeyError: ‘20190102’
通过位置选择
选择某行
df.iloc[3]
Out[71]:
A -0.485980
B -1.281454
C 0.354063
D -1.418858
Name: 2019-01-04 00:00:00, dtype: float64
iloc[]方法的参数,必须是数值。
选择指定行列的数据
df.iloc[3:5, 0:2]
Out[72]:
A B
2019-01-04 -0.485980 -1.281454
2019-01-05 -1.122717 -2.789041
df.iloc[:,:]
Out[73]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
df.iloc[[1, 2, 4], [0, 2]]
Out[74]:
A C
2019-01-02 -2.420703 -0.346070
2019-01-03 1.364425 2.386880
2019-01-05 -1.122717 -0.791812
同 loc[],: 代表全部。
选择某值
df.iloc[1, 1]
Out[75]: -1.1162076820700824
df.iat[1, 1]
Out[76]: -1.1162076820700824
可以通过 iloc[]和 iat[]两种方法获取数值。
按条件判断选择
按某列的数值判断选择
df[df.A > 0]
Out[77]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-03 1.364425 -0.947641 2.386880 0.585372
2019-01-06 0.221597 -0.753038 -1.741256 0.287280
筛选出符合要求的数据
df[df > 0]
Out[78]:
A B C D
2019-01-01 0.671622 0.785726 0.392435 0.874692
2019-01-02 NaN NaN NaN 0.785941
2019-01-03 1.364425 NaN 2.386880 0.585372
2019-01-04 NaN NaN 0.354063 NaN
2019-01-05 NaN NaN NaN NaN
2019-01-06 0.221597 NaN NaN 0.287280
不符合要求的数据均会被赋值为空 NaN。
使用 isin()方法筛选
df2 = df.copy()
df2[‘E’] = [‘one’, ‘one’, ‘two’, ‘three’, ‘four’, ‘three’]
df2
Out[88]:
A B C D E
2019-01-01 0.671622 0.785726 0.392435 0.874692 one
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 one
2019-01-03 1.364425 -0.947641 2.386880 0.585372 two
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 three
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four
2019-01-06 0.221597 -0.753038 -1.741256 0.287280 three
df2[‘E’].isin([‘two’, ‘four’])
Out[89]:
2019-01-01 False
2019-01-02 False
2019-01-03 True
2019-01-04 False
2019-01-05 True
2019-01-06 False
Freq: D, Name: E, dtype: bool
df2[df2[‘E’].isin([‘two’, ‘four’])]
Out[90]:
A B C D E
2019-01-03 1.364425 -0.947641 2.386880 0.585372 two
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four
注意:isin 必须严格一致才行,df 中的默认数值小数点位数很长,并非显示的 5 位,为了方便展示,所以新增了 E 列。直接用原数值,情况如下,可看出 [1,1] 位置符合要求。
df.isin([-1.1162076820700824])
Out[95]:
A B C D
2019-01-01 False False False False
2019-01-02 False True False False
2019-01-03 False False False False
2019-01-04 False False False False
2019-01-05 False False False False
2019-01-06 False False False False
设定值
通过指定索引设定列
s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range(‘20190102’, periods=6))
s1
Out[98]:
2019-01-02 1
2019-01-03 2
2019-01-04 3
2019-01-05 4
2019-01-06 5
2019-01-07 6
Freq: D, dtype: int64
df[‘F’]=s1
df
Out[101]:
A B C D F
2019-01-01 0.671622 0.785726 0.392435 0.874692 NaN
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0
2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0
2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
空值会自动填充为 NaN。
通过标签设定值
df.at[dates[0], ‘A’] = 0
df
Out[103]:
A B C D F
2019-01-01 0.000000 0.785726 0.392435 0.874692 NaN
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0
2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0
2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通过为止设定值
df.iat[0, 1] = 0
df
Out[105]:
A B C D F
2019-01-01 0.000000 0.000000 0.392435 0.874692 NaN
2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0
2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0
2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0
2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0
2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通过 NumPy array 设定值
df.loc[:, ‘D’] = np.array([5] * len(df))
df
Out[109]:
A B C D F
2019-01-01 0.000000 0.000000 0.392435 5 NaN
2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0
2019-01-03 1.364425 -0.947641 2.386880 5 2.0
2019-01-04 -0.485980 -1.281454 0.354063 5 3.0
2019-01-05 -1.122717 -2.789041 -0.791812 5 4.0
2019-01-06 0.221597 -0.753038 -1.741256 5 5.0
通过条件判断设定值
df2 = df.copy()
df2[df2 > 0] = -df2
df2
Out[112]:
A B C D F
2019-01-01 0.000000 0.000000 -0.392435 -5 NaN
2019-01-02 -2.420703 -1.116208 -0.346070 -5 -1.0
2019-01-03 -1.364425 -0.947641 -2.386880 -5 -2.0
2019-01-04 -0.485980 -1.281454 -0.354063 -5 -3.0
2019-01-05 -1.122717 -2.789041 -0.791812 -5 -4.0
2019-01-06 -0.221597 -0.753038 -1.741256 -5 -5.0
空值处理 Missing Data
pandas 默认使用 np.nan 来表示空值,在统计计算中会直接忽略。
通过 reindex()方法可以新增、修改、删除某坐标轴(行或列)的索引,并返回一个数据的拷贝:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + [‘E’])
df1.loc[dates[0]:dates[1], ‘E’] = 1
df1
Out[115]:
A B C D F E
2019-01-01 0.000000 0.000000 0.392435 5 NaN 1.0
2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0
2019-01-03 1.364425 -0.947641 2.386880 5 2.0 NaN
2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 NaN
删除空值
df1.dropna(how=’any’)
Out[116]:
A B C D F E
2019-01-02 -2.420703 -1.116208 -0.34607 5 1.0 1.0
填充空值
df1.fillna(value=5)
Out[117]:
A B C D F E
2019-01-01 0.000000 0.000000 0.392435 5 5.0 1.0
2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0
2019-01-03 1.364425 -0.947641 2.386880 5 2.0 5.0
2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 5.0
判断是否为空值
pd.isna(df1)
Out[118]:
A B C D F E
2019-01-01 False False False False True False
2019-01-02 False False False False False False
2019-01-03 False False False False False True
2019-01-04 False False False False False True
运算 Operations
统计
注意 所有的统计默认是不包含空值的
平均值
默认情况是按列求平均值:
df.mean()
Out[119]:
A -0.407230
B -1.147897
C 0.042373
D 5.000000
F 3.000000
dtype: float64
如果需要按行求平均值,需指定轴参数:
df.mean(1)
Out[120]:
2019-01-01 1.348109
2019-01-02 0.423404
2019-01-03 1.960733
2019-01-04 1.317326
2019-01-05 0.859286
2019-01-06 1.545461
Freq: D, dtype: float64
数值移动
s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates)
s
Out[122]:
2019-01-01 1.0
2019-01-02 3.0
2019-01-03 5.0
2019-01-04 NaN
2019-01-05 6.0
2019-01-06 8.0
Freq: D, dtype: float64
s = s.shift(2)
s
Out[125]:
2019-01-01 NaN
2019-01-02 NaN
2019-01-03 1.0
2019-01-04 3.0
2019-01-05 5.0
2019-01-06 NaN
Freq: D, dtype: float64
这里将 s 的值移动两个,那么空出的部分会自动使用 NaN 填充。
不同维度间的运算,pandas 会自动扩展维度:
df.sub(s, axis=’index’)
Out[128]:
A B C D F
2019-01-01 NaN NaN NaN NaN NaN
2019-01-02 NaN NaN NaN NaN NaN
2019-01-03 0.364425 -1.947641 1.386880 4.0 1.0
2019-01-04 -3.485980 -4.281454 -2.645937 2.0 0.0
2019-01-05 -6.122717 -7.789041 -5.791812 0.0 -1.0
2019-01-06 NaN NaN NaN NaN NaN
应用
通过 apply()方法,可以对数据进行逐一操作:
累计求和
df.apply(np.cumsum)
Out[130]:
A B C D F
2019-01-01 0.000000 0.000000 0.392435 5 NaN
2019-01-02 -2.420703 -1.116208 0.046365 10 1.0
2019-01-03 -1.056278 -2.063849 2.433245 15 3.0
2019-01-04 -1.542258 -3.345303 2.787307 20 6.0
2019-01-05 -2.664975 -6.134345 1.995495 25 10.0
2019-01-06 -2.443377 -6.887383 0.254239 30 15.0
这里使用了 apply()方法调用 np.cumsum 方法,也可直接使用 df.cumsum():
df.cumsum()
Out[133]:
A B C D F
2019-01-01 0.000000 0.000000 0.392435 5.0 NaN
2019-01-02 -2.420703 -1.116208 0.046365 10.0 1.0
2019-01-03 -1.056278 -2.063849 2.433245 15.0 3.0
2019-01-04 -1.542258 -3.345303 2.787307 20.0 6.0
2019-01-05 -2.664975 -6.134345 1.995495 25.0 10.0
2019-01-06 -2.443377 -6.887383 0.254239 30.0 15.0
自定义方法
通过自定义函数,配合 apply()方法,可以实现更多数据处理:
df.apply(lambda x: x.max() – x.min())
Out[134]:
A 3.785129
B 2.789041
C 4.128136
D 0.000000
F 4.000000
dtype: float64
矩阵
统计矩阵中每个元素出现的频次:
s = pd.Series(np.random.randint(0, 7, size=10))
s
Out[136]:
0 2
1 0
2 4
3 0
4 3
5 3
6 6
7 4
8 6
9 5
dtype: int64
s.value_counts()
Out[137]:
6 2
4 2
3 2
0 2
5 1
2 1
dtype: int64
String 方法
所有的 Series 类型都可以直接调用 str 的属性方法来对每个对象进行操作。
比如转换成大写:
s = pd.Series([‘A’, ‘B’, ‘C’, ‘Aaba’, ‘Baca’, np.nan, ‘CABA’, ‘dog’, ‘cat’])
s.str.upper()
Out[139]:
0 A
1 B
2 C
3 AABA
4 BACA
5 NaN
6 CABA
7 DOG
8 CAT
dtype: object
分列:
s = pd.Series([‘A,b’, ‘c,d’])
s
Out[142]:
0 A,b
1 c,d
dtype: object
s.str.split(‘,’, expand=True)
Out[143]:
0 1
0 A b
1 c d
其他方法:
dir(str)
Out[140]:
[‘capitalize’,
‘casefold’,
‘center’,
‘count’,
‘encode’,
‘endswith’,
‘expandtabs’,
‘find’,
‘format’,
‘format_map’,
‘index’,
‘isalnum’,
‘isalpha’,
‘isascii’,
‘isdecimal’,
‘isdigit’,
‘isidentifier’,
‘islower’,
‘isnumeric’,
‘isprintable’,
‘isspace’,
‘istitle’,
‘isupper’,
‘join’,
‘ljust’,
‘lower’,
‘lstrip’,
‘maketrans’,
‘partition’,
‘replace’,
‘rfind’,
‘rindex’,
‘rjust’,
‘rpartition’,
‘rsplit’,
‘rstrip’,
‘split’,
‘splitlines’,
‘startswith’,
‘strip’,
‘swapcase’,
‘title’,
‘translate’,
‘upper’,
‘zfill’]
合并 Merge
pandas` 可以提供很多方法可以快速的合并各种类型的 Series、DataFrame 以及 Panel Object。
Concat 方法
df = pd.DataFrame(np.random.randn(10, 4))
df
Out[145]:
0 1 2 3
0 -0.227408 -0.185674 -0.187919 0.185685
1 1.132517 -0.539992 1.156631 -0.022468
2 0.214134 -1.283055 -0.862972 0.518942
3 0.785903 1.033915 -0.471496 -1.403762
4 -0.676717 -0.529971 -1.161988 -1.265071
5 0.670126 1.320960 -0.128098 0.718631
6 0.589902 0.349386 0.221955 1.749188
7 -0.328885 0.607929 -0.973610 -0.928472
8 1.724243 -0.661503 -0.374254 0.409250
9 1.346625 0.618285 0.528776 -0.628470
# break it into pieces
pieces = [df[:3], df[3:7], df[7:]]
pieces
Out[147]:
[0 1 2 3
0 -0.227408 -0.185674 -0.187919 0.185685
1 1.132517 -0.539992 1.156631 -0.022468
2 0.214134 -1.283055 -0.862972 0.518942,
0 1 2 3
3 0.785903 1.033915 -0.471496 -1.403762
4 -0.676717 -0.529971 -1.161988 -1.265071
5 0.670126 1.320960 -0.128098 0.718631
6 0.589902 0.349386 0.221955 1.749188,
0 1 2 3
7 -0.328885 0.607929 -0.973610 -0.928472
8 1.724243 -0.661503 -0.374254 0.409250
9 1.346625 0.618285 0.528776 -0.628470]
pd.concat(pieces)
Out[148]:
0 1 2 3
0 -0.227408 -0.185674 -0.187919 0.185685
1 1.132517 -0.539992 1.156631 -0.022468
2 0.214134 -1.283055 -0.862972 0.518942
3 0.785903 1.033915 -0.471496 -1.403762
4 -0.676717 -0.529971 -1.161988 -1.265071
5 0.670126 1.320960 -0.128098 0.718631
6 0.589902 0.349386 0.221955 1.749188
7 -0.328885 0.607929 -0.973610 -0.928472
8 1.724243 -0.661503 -0.374254 0.409250
9 1.346625 0.618285 0.528776 -0.628470
Merge 方法
这是类似 sql 的合并方法:
left = pd.DataFrame({‘key’: [‘foo’, ‘foo’], ‘lval’: [1, 2]})
right = pd.DataFrame({‘key’: [‘foo’, ‘foo’], ‘rval’: [4, 5]})
left
Out[151]:
key lval
0 foo 1
1 foo 2
right
Out[152]:
key rval
0 foo 4
1 foo 5
pd.merge(left, right, on=’key’)
Out[153]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
另一个例子:
left = pd.DataFrame({‘key’: [‘foo’, ‘bar’], ‘lval’: [1, 2]})
right = pd.DataFrame({‘key’: [‘foo’, ‘bar’], ‘rval’: [4, 5]})
left
Out[156]:
key lval
0 foo 1
1 bar 2
right
Out[157]:
key rval
0 foo 4
1 bar 5
pd.merge(left, right, on=’key’)
Out[158]:
key lval rval
0 foo 1 4
1 bar 2 5
Append 方法
在 DataFrame 中增加行
df = pd.DataFrame(np.random.randn(8, 4), columns=[‘A’, ‘B’, ‘C’, ‘D’])
df
Out[160]:
A B C D
0 -0.496709 0.573449 0.076059 0.685285
1 0.479253 0.587376 -1.240070 -0.907910
2 -0.052609 -0.287786 -1.949402 1.163323
3 -0.659489 0.525583 0.820922 -1.368544
4 1.270453 -1.813249 0.059915 0.586703
5 1.859657 0.564274 -0.198763 -1.794173
6 -0.649153 -3.129258 0.063418 -0.727936
7 0.862402 -0.800031 -1.954784 -0.028607
s = df.iloc[3]
s
Out[162]:
A -0.659489
B 0.525583
C 0.820922
D -1.368544
Name: 3, dtype: float64
df.append(s, ignore_index=True)
Out[163]:
A B C D
0 -0.496709 0.573449 0.076059 0.685285
1 0.479253 0.587376 -1.240070 -0.907910
2 -0.052609 -0.287786 -1.949402 1.163323
3 -0.659489 0.525583 0.820922 -1.368544
4 1.270453 -1.813249 0.059915 0.586703
5 1.859657 0.564274 -0.198763 -1.794173
6 -0.649153 -3.129258 0.063418 -0.727936
7 0.862402 -0.800031 -1.954784 -0.028607
8 -0.659489 0.525583 0.820922 -1.368544
这里要注意,我们增加了 ignore_index=True 参数,如果不设置的话,那么增加的新行的 index 仍然是 3,这样在后续的处理中可能有存在问题。具体也需要看情况来处理。
df.append(s)
Out[164]:
A B C D
0 -0.496709 0.573449 0.076059 0.685285
1 0.479253 0.587376 -1.240070 -0.907910
2 -0.052609 -0.287786 -1.949402 1.163323
3 -0.659489 0.525583 0.820922 -1.368544
4 1.270453 -1.813249 0.059915 0.586703
5 1.859657 0.564274 -0.198763 -1.794173
6 -0.649153 -3.129258 0.063418 -0.727936
7 0.862402 -0.800031 -1.954784 -0.028607
3 -0.659489 0.525583 0.820922 -1.368544
分组 Grouping
一般分组统计有三个步骤:
分组:选择需要的数据
计算:对每个分组进行计算
合并:把分组计算的结果合并为一个数据结构中
df = pd.DataFrame({‘A’: [‘foo’, ‘bar’, ‘foo’, ‘bar’,
‘foo’, ‘bar’, ‘foo’, ‘foo’],
‘B’: [‘one’, ‘one’, ‘two’, ‘three’,
‘two’, ‘two’, ‘one’, ‘three’],
‘C’: np.random.randn(8),
‘D’: np.random.randn(8)})
df
Out[166]:
A B C D
0 foo one -1.252153 0.172863
1 bar one 0.238547 -0.648980
2 foo two 0.756975 0.195766
3 bar three -0.933405 -0.320043
4 foo two -0.310650 -1.388255
5 bar two 1.568550 -1.911817
6 foo one -0.340290 -2.141259
按 A 列分组并使用 sum 函数进行计算:
df.groupby(‘A’).sum()
Out[167]:
C D
A
bar 0.873692 -2.880840
foo -1.817027 -5.833961
这里由于 B 列无法应用 sum 函数,所以直接被忽略了。
按 A、B 列分组并使用 sum 函数进行计算:
df.groupby([‘A’, ‘B’]).sum()
Out[168]:
C D
A B
bar one 0.238547 -0.648980
three -0.933405 -0.320043
two 1.568550 -1.911817
foo one -1.592443 -1.968396
three -0.670909 -2.673075
two 0.446325 -1.192490
这样就有了一个多层 index 的结果集。
整形 Reshaping
堆叠 Stack
python 的 zip 函数可以将对象中对应的元素打包成一个个的元组:
tuples = list(zip([‘bar’, ‘bar’, ‘baz’, ‘baz’,
‘foo’, ‘foo’, ‘qux’, ‘qux’],
[‘one’, ‘two’, ‘one’, ‘two’,
‘one’, ‘two’, ‘one’, ‘two’]))
tuples
Out[172]:
[(‘bar’, ‘one’),
(‘bar’, ‘two’),
(‘baz’, ‘one’),
(‘baz’, ‘two’),
(‘foo’, ‘one’),
(‘foo’, ‘two’),
(‘qux’, ‘one’),
(‘qux’, ‘two’)]
## 设置两级索引
index = pd.MultiIndex.from_tuples(tuples, names=[‘first’, ‘second’])
index
Out[174]:
MultiIndex(levels=[[‘bar’, ‘baz’, ‘foo’, ‘qux’], [‘one’, ‘two’]],
codes=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=[‘first’, ‘second’])
## 创建 DataFrame
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[‘A’, ‘B’])
df
Out[176]:
A B
first second
bar one -0.501215 -0.947993
two -0.828914 0.232167
baz one 1.245419 1.006092
two 1.016656 -0.441073
foo one 0.479037 -0.500034
two -1.113097 0.591696
qux one -0.014760 -0.320735
two -0.648743 1.499899
## 选取 DataFrame
df2 = df[:4]
df2
Out[179]:
A B
first second
bar one -0.501215 -0.947993
two -0.828914 0.232167
baz one 1.245419 1.006092
two 1.016656 -0.441073
使用 stack()方法,可以通过堆叠的方式将二维数据变成为一维数据:
stacked = df2.stack()
stacked
Out[181]:
first second
bar one A -0.501215
B -0.947993
two A -0.828914
B 0.232167
baz one A 1.245419
B 1.006092
two A 1.016656
B -0.441073
dtype: float64
对应的逆操作为 unstacked()方法:
stacked.unstack()
Out[182]:
A B
first second
bar one -0.501215 -0.947993
two -0.828914 0.232167
baz one 1.245419 1.006092
two 1.016656 -0.441073
stacked.unstack(1)
Out[183]:
second one two
first
bar A -0.501215 -0.828914
B -0.947993 0.232167
baz A 1.245419 1.016656
B 1.006092 -0.441073
stacked.unstack(0)
Out[184]:
first bar baz
second
one A -0.501215 1.245419
B -0.947993 1.006092
two A -0.828914 1.016656
B 0.232167 -0.441073
unstack()默认对最后一层级进行操作,也可通过输入参数指定。
表格转置
df = pd.DataFrame({‘A’: [‘one’, ‘one’, ‘two’, ‘three’] * 3,
‘B’: [‘A’, ‘B’, ‘C’] * 4,
‘C’: [‘foo’, ‘foo’, ‘foo’, ‘bar’, ‘bar’, ‘bar’] * 2,
‘D’: np.random.randn(12),
‘E’: np.random.randn(12)})
df
Out[190]:
A B C D E
0 one A foo -0.933264 -2.387490
1 one B foo -0.288101 0.023214
2 two C foo 0.594490 0.418505
3 three A bar 0.450683 1.939623
4 one B bar 0.243897 -0.965783
5 one C bar -0.705494 -0.078283
6 two A foo 1.560352 0.419907
7 three B foo 0.199453 0.998711
8 one C foo 1.426861 -1.108297
9 one A bar -0.570951 -0.022560
10 two B bar -0.350937 -1.767804
11 three C bar 0.983465 0.065792
通过 pivot_table()方法可以很方便的进行行列的转换:
pd.pivot_table(df, values=’D’, index=[‘A’, ‘B’], columns=[‘C’])
Out[191]:
C bar foo
A B
one A -0.570951 -0.933264
B 0.243897 -0.288101
C -0.705494 1.426861
three A 0.450683 NaN
B NaN 0.199453
C 0.983465 NaN
two A NaN 1.560352
B -0.350937 NaN
C NaN 0.594490
转换中,涉及到空值部分会自动填充为 NaN。
时间序列 Time Series
pandas 的在时序转换方面十分强大,可以很方便的进行各种转换。
时间间隔调整
rng = pd.date_range(‘1/1/2019′, periods=100, freq=’S’)
rng[:5]
Out[214]:
DatetimeIndex([‘2019-01-01 00:00:00’, ‘2019-01-01 00:00:01’,
‘2019-01-01 00:00:02’, ‘2019-01-01 00:00:03’,
‘2019-01-01 00:00:04′],
dtype=’datetime64[ns]’, freq=’S’)
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.head(5)
Out[216]:
2019-01-01 00:00:00 245
2019-01-01 00:00:01 347
2019-01-01 00:00:02 113
2019-01-01 00:00:03 196
2019-01-01 00:00:04 131
Freq: S, dtype: int64
## 按 10s 间隔进行重新采样
ts1 = ts.resample(’10S’)
ts1
Out[209]: DatetimeIndexResampler [freq=<10 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]
## 用求平均的方式进行数据整合
ts1.mean()
Out[218]:
2019-01-01 00:00:00 174.0
2019-01-01 00:00:10 278.5
2019-01-01 00:00:20 281.8
2019-01-01 00:00:30 337.2
2019-01-01 00:00:40 221.0
2019-01-01 00:00:50 277.1
2019-01-01 00:01:00 171.0
2019-01-01 00:01:10 321.0
2019-01-01 00:01:20 318.6
2019-01-01 00:01:30 302.6
Freq: 10S, dtype: float64
## 用求和的方式进行数据整合
ts1.sum()
Out[219]:
2019-01-01 00:00:00 1740
2019-01-01 00:00:10 2785
2019-01-01 00:00:20 2818
2019-01-01 00:00:30 3372
2019-01-01 00:00:40 2210
2019-01-01 00:00:50 2771
2019-01-01 00:01:00 1710
2019-01-01 00:01:10 3210
2019-01-01 00:01:20 3186
2019-01-01 00:01:30 3026
Freq: 10S, dtype: int64
这里先通过 resample 进行重采样,在指定 sum()或者 mean()等方式来指定冲采样的处理方式。
显示时区:
rng = pd.date_range(‘1/1/2019 00:00′, periods=5, freq=’D’)
rng
Out[221]:
DatetimeIndex([‘2019-01-01’, ‘2019-01-02’, ‘2019-01-03’, ‘2019-01-04’,
‘2019-01-05′],
dtype=’datetime64[ns]’, freq=’D’)
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
Out[223]:
2019-01-01 -2.327686
2019-01-02 1.527872
2019-01-03 0.063982
2019-01-04 -0.213572
2019-01-05 -0.014856
Freq: D, dtype: float64
ts_utc = ts.tz_localize(‘UTC’)
ts_utc
Out[225]:
2019-01-01 00:00:00+00:00 -2.327686
2019-01-02 00:00:00+00:00 1.527872
2019-01-03 00:00:00+00:00 0.063982
2019-01-04 00:00:00+00:00 -0.213572
2019-01-05 00:00:00+00:00 -0.014856
Freq: D, dtype: float64
转换时区:
ts_utc.tz_convert(‘US/Eastern’)
Out[226]:
2018-12-31 19:00:00-05:00 -2.327686
2019-01-01 19:00:00-05:00 1.527872
2019-01-02 19:00:00-05:00 0.063982
2019-01-03 19:00:00-05:00 -0.213572
2019-01-04 19:00:00-05:00 -0.014856
Freq: D, dtype: float64
时间格式转换
rng = pd.date_range(‘1/1/2019′, periods=5, freq=’M’)
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts
Out[230]:
2019-01-31 0.197134
2019-02-28 0.569082
2019-03-31 -0.322141
2019-04-30 0.005778
2019-05-31 -0.082306
Freq: M, dtype: float64
ps = ts.to_period()
ps
Out[232]:
2019-01 0.197134
2019-02 0.569082
2019-03 -0.322141
2019-04 0.005778
2019-05 -0.082306
Freq: M, dtype: float64
ps.to_timestamp()
Out[233]:
2019-01-01 0.197134
2019-02-01 0.569082
2019-03-01 -0.322141
2019-04-01 0.005778
2019-05-01 -0.082306
Freq: MS, dtype: float64
在是时间段和时间转换过程中,有一些很方便的算术方法可以使用,比如我们转换如下两个频率:
1、按季度划分,且每个年的最后一个月是 11 月。
2、按季度划分,每个月开始为频率一中下一个月的早上 9 点。
prng = pd.period_range(‘2018Q1’, ‘2019Q4′, freq=’Q-NOV’)
prng
Out[243]:
PeriodIndex([‘2018Q1’, ‘2018Q2’, ‘2018Q3’, ‘2018Q4’, ‘2019Q1’, ‘2019Q2’,
‘2019Q3’, ‘2019Q4′],
dtype=’period[Q-NOV]’, freq=’Q-NOV’)
ts = pd.Series(np.random.randn(len(prng)), prng)
ts
Out[245]:
2018Q1 -0.112692
2018Q2 -0.507304
2018Q3 -0.324846
2018Q4 0.549671
2019Q1 -0.897732
2019Q2 1.130070
2019Q3 -0.399814
2019Q4 0.830488
Freq: Q-NOV, dtype: float64
ts.index = (prng.asfreq(‘M’, ‘e’) + 1).asfreq(‘H’, ‘s’) + 9
ts
Out[247]:
2018-03-01 09:00 -0.112692
2018-06-01 09:00 -0.507304
2018-09-01 09:00 -0.324846
2018-12-01 09:00 0.549671
2019-03-01 09:00 -0.897732
2019-06-01 09:00 1.130070
2019-09-01 09:00 -0.399814
2019-12-01 09:00 0.830488
Freq: H, dtype: float64
注意:这个例子有点怪。可以这样理解,我们先将 prng 直接转换为按小时显示:
prng.asfreq(‘H’, ‘end’)
Out[253]:
PeriodIndex([‘2018-02-28 23:00’, ‘2018-05-31 23:00’, ‘2018-08-31 23:00’,
‘2018-11-30 23:00’, ‘2019-02-28 23:00’, ‘2019-05-31 23:00’,
‘2019-08-31 23:00’, ‘2019-11-30 23:00′],
dtype=’period[H]’, freq=’H’)
我们要把时间转换为下一个月的早上 9 点,所以先转换为按月显示,并每个月加 1(即下个月),然后按小时显示并加 9(早上 9 点)。
另外例子中 s 参数是 start 的简写,e 参数是 end 的简写,Q-NOV 即表示按季度,且每年的 NOV 是最后一个月。
更多了 freq 简称可以参考:http://pandas.pydata.org/pand…
asfreq()方法介绍可参考:http://pandas.pydata.org/pand…
分类目录类型 Categoricals
关于 Categories 类型介绍可以参考:http://pandas.pydata.org/pand…
类型转换:astype(‘category’)
df = pd.DataFrame({“id”: [1, 2, 3, 4, 5, 6],
“raw_grade”: [‘a’, ‘b’, ‘b’, ‘a’, ‘a’, ‘e’]})
df
Out[255]:
id raw_grade
0 1 a
1 2 b
2 3 b
3 4 a
4 5 a
5 6 e
df[‘grade’] = df[‘raw_grade’].astype(‘category’)
df[‘grade’]
Out[257]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
重命名分类:cat
df[“grade”].cat.categories = [“very good”, “good”, “very bad”]
df[‘grade’]
Out[269]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (3, object): [very good, good, very bad]
重分类:
df[‘grade’] = df[‘grade’].cat.set_categories([“very bad”, “bad”, “medium”,”good”, “very good”])
df[‘grade’]
Out[271]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
排列
df.sort_values(by=”grade”)
Out[272]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
分组
df.groupby(“grade”).size()
Out[273]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
画图 Plotting
Series
ts = pd.Series(np.random.randn(1000),
index=pd.date_range(‘1/1/2000’, periods=1000))
ts = pd.Series(np.random.randn(1000),
index=pd.date_range(‘1/1/2019’, periods=1000))
ts = ts.cumsum()
ts.plot()
Out[277]: <matplotlib.axes._subplots.AxesSubplot at 0x1135bcc50>
import matplotlib.pyplot as plt
plt.show()
DataFrame 画图
使用 plot 可以把所有的列都通过标签的形式展示出来:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=[‘A’, ‘B’, ‘C’, ‘D’])
df = df.cumsum()
plt.figure()
Out[282]: <Figure size 640×480 with 0 Axes>
df.plot()
Out[283]: <matplotlib.axes._subplots.AxesSubplot at 0x11587e4e0>
plt.legend(loc=’best’)
导入导出数据 Getting Data In/Out
CSV
写入:
df.to_csv(‘foo.csv’)
读取:
pd.read_csv(‘foo.csv’)
HDF5
写入:
df.to_hdf(‘foo.h5’, ‘df’)
读取:
pd.read_hdf(‘foo.h5’, ‘df’)
Excel
写入:
df.to_excel(‘foo.xlsx’, sheet_name=’Sheet1′)
读取:
pd.read_excel(‘foo.xlsx’, ‘Sheet1’, index_col=None, na_values=[‘NA’])
异常处理 Gotchas
如果有一些异常情况比如:
>>> if pd.Series([False, True, False]):
… print(“I was true”)
Traceback
…
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
可以参考如下链接:
http://pandas.pydata.org/pand…
http://pandas.pydata.org/pand…