强化学习
强化学习(英语:Reinforcement learning,简称 RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论、控制论、运筹学、信息论、仿真优化、多主体系统学习、群体智能、统计学以及遗传算法。在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic programming,ADP)。在最优控制理论中也有研究这个问题,虽然大部分的研究是关于最优解的存在和特性,并非是学习或者近似方面。在经济学和博弈论中,强化学习被用来解释在有限理性的条件下如何出现平衡。
在机器学习问题中,环境通常被规范为马可夫决策过程(MDP),所以许多强化学习算法在这种情况下使用动态规划技巧。传统的技术和强化学习算法的主要区别是,后者不需要关于 MDP 的知识,而且针对无法找到确切方法的大规模 MDP。
强化学习和标准的监督式学习之间的区别在于,它并不需要出现正确的输入 / 输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。强化学习中的“探索 - 遵从”的交换,在多臂老虎机问题和有限 MDP 中研究得最多。
学习自动机
学习自动机是在一随机环境下的适应性决策产生单元,可以根据和环境重复的互动来学习最佳的动作。动作是依照特定的机率分布来决定,而系统会依采取特定行动后的环境反应来更新机率分布。
在强化学习的领域中,学习自动机的特征是马可夫决策过程。政策迭代者会直接处理 π,这点其他强化学习的算法不同。另一个政策迭代者的例子是演化算法。
链路预测
网络中的链路预测 (Link Prediction) 是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值。
基于学习自动机的链路预测模型实现
import numpy as npimport timefrom random import choice import pandas as pdimport os
定义计算共同邻居指标的方法
define some functions to calculate some baseline index
”’def Cn(MatrixAdjacency):
Matrix_similarity = np.dot(MatrixAdjacency,MatrixAdjacency)
return Matrix_similarity
”’
计算 Jaccard 相似性指标
def Jaccavrd(MatrixAdjacency_Train):
Matrix_similarity = np.dot(MatrixAdjacency_Train,MatrixAdjacency_Train)
deg_row = sum(MatrixAdjacency_Train)
deg_row.shape = (deg_row.shape[0],1)
deg_row_T = deg_row.T
tempdeg = deg_row + deg_row_T
temp = tempdeg – Matrix_similarity
Matrix_similarity = Matrix_similarity / temp
return Matrix_similarity
定义计算 Salton 指标的方法
def Salton_Cal(MatrixAdjacency_Train):
similarity = np.dot(MatrixAdjacency_Train,MatrixAdjacency_Train)
deg_row = sum(MatrixAdjacency_Train)
deg_row.shape = (deg_row.shape[0],1)
deg_row_T = deg_row.T
tempdeg = np.dot(deg_row,deg_row_T)
temp = np.sqrt(tempdeg)
np.seterr(divide=’ignore’, invalid=’ignore’)
Matrix_similarity = np.nan_to_num(similarity / temp)
print np.isnan(Matrix_similarity)
Matrix_similarity = np.nan_to_num(Matrix_similarity)
print np.isnan(Matrix_similarity)
return Matrix_similarity
定义计算 Katz1 指标的方法
def Katz_Cal(MatrixAdjacency):
#α 取值
Parameter = 0.01
Matrix_EYE = np.eye(MatrixAdjacency.shape[0])
Temp = Matrix_EYE – MatrixAdjacency * Parameter
Matrix_similarity = np.linalg.inv(Temp)
Matrix_similarity = Matrix_similarity – Matrix_EYE
return Matrix_similarity
定义计算局部路径 LP 相似性指标的方法
”’def LP_Cal(MatrixAdjacency):
Matrix_similarity = np.dot(MatrixAdjacency,MatrixAdjacency)
Parameter = 0.05
Matrix_LP = np.dot(np.dot(MatrixAdjacency,MatrixAdjacency),MatrixAdjacency) * Parameter
Matrix_similarity = np.dot(Matrix_similarity,Matrix_LP)
return Matrix_similarity
”’
计算资源分配(Resource Allocation)相似性指标
def RA(MatrixAdjacency_Train):
RA_Train = sum(MatrixAdjacency_Train)
RA_Train.shape = (RA_Train.shape[0],1)
MatrixAdjacency_Train_Log = MatrixAdjacency_Train / RA_Train
MatrixAdjacency_Train_Log = np.nan_to_num(MatrixAdjacency_Train_Log)
Matrix_similarity = np.dot(MatrixAdjacency_Train,MatrixAdjacency_Train_Log)
return Matrix_similarity
随机环境一:针对活跃性的节点对
def RandomEnviromentForActive(MatrixAdjacency,i,j):
Index = np.random.randint(1, 5)
print(Index)
global IndexName
if Index == 1:
IndexName = ‘ 相似性指标是:Jaccard Index’
print(IndexName)
similarity_matrix = Jaccavrd(MatrixAdjacency)
similarity = similarity_matrix[i,j]
elif Index == 2:
IndexName = ‘ 相似性指标是:Salton Index’
print(IndexName)
similarity_matrix = Salton_Cal(MatrixAdjacency)
similarity = similarity_matrix[i,j]
elif Index == 3:
IndexName = ‘ 相似性指标是:Katz Index’
print(IndexName)
similarity_matrix = Katz_Cal(MatrixAdjacency)
similarity = similarity_matrix[i,j]
else index == 4:
IndexName = ‘ 相似性指标是:RA Index’
print(IndexName)
similarity_matrix = RA(MatrixAdjacency)
similarity = similarity_matrix[i,j]
return similarity
随机环境二:主要针对非活跃性的节点对
def RandomEnviromentForNonActive():
Action = np.random.randint(1, 4)
if Action == 1:
ActionName = ‘ID3’
similarity_matrix = ID3_Cal(MatrixAdjacency)
#similarity = similarity_matrix[i,j]
elif Action == 2:
ActionName = ‘CART’
similarity_matrix = Cart_Cal(MatrixAdjacency)
#similarity = similarity_matrix[i,j]
elif Action == 3:
ActionName = ‘C4.5’
similarity_matrix = C4_Cal(MatrixAdjacency)
#similarity = similarity_matrix[i,j]
return similarity
构建学习自动机(To Construct the agent)
def ContructionAgent(filepath,n1,n2):
f = open(filepath)
lines = f.readlines()
A = np.zeros((50, 50), dtype=float)
A_row = 0
for line in lines:
list = line.strip(‘\n’).split(‘ ‘)
A[A_row:] = list[0:50]
A_row += 1
# 初始化 p1 和 p2
a = 0.05
b = 0.01
p1 =0.5
p2 =0.5
Action = 1
# 在这里使用数字 1 代表选择动作‘Yes’, 用 2 代表动作‘No’
for i in range(1):
# global Action
# 相似性阈值(the threashhold_value of similarity)
if (p1 >= p2):
Action = 1
else:
Action = 2
print(‘ 选择的动作是:’ + str(Action))
threshhold_value = 0.3
similarity = RandomEnviromentForActive(A, n1, n2)
# p1 表示动作 1 ’Yes’ 被选择的概率,p2 表示动作 2 ’No’ 被选择的概率
# 前一次选择的动作是‘Yes’,并且该动作得到了奖励
if (similarity > threshhold_value) and (Action == 1):
p1 = p1 + a * (1 – p1)
p2 = 1-p1
# p2 = (1 – a) * p2
# 前一次选择的动作是 ’No’, 并且该动作得到了奖励
elif (similarity < threshhold_value) and (Action == 2):
p2 = (1-a)*p2
p1 = 1-p2
# p1 = (1 – a) * p1
# 前一次选择的动作是‘Yes’,但该动作得到了惩罚
elif (similarity < threshhold_value) and (Action == 1):
p2 = 1-b*p2
p1 = 1-p2
#p2 = 1 – b * p2
# 前一次选择的动作是‘No’,但该动作得到了惩罚
elif (similarity > threshhold_value) and (Action == 2):
p1 = b + (1 – b) * (1 – p1)
p2 = 1-p1
# p1 = 1 – b * p1
if (p1 >= p2):
print(‘ 下一时刻选择的动作是:Yes’)
else:
print(‘ 下一时刻选择的动作是:No’)
return p1, p2
import os
import pandas as pdimport numpy as nppath=r’../Data/itcmatrixs/36000/’result = np.zeros((50, 50))for i in os.walk(path):
#print(i)
#print(type(i))
for m in range(50):
for n in range(50):
r = None
for j in range(26):
datapath = path+i[2][j]
p1,p2 = ContructionAgent(datapath,m,n)
r = int(p1>=p2)
result[m,n] = r;
r.save(‘result.npy’) pass
附注
有需要源码和数据集的请发送信息到 280815640@qq.com,感谢您的关注。