关于airflow:workflow-之-Dagster-基本用法qbit

前言技术栈 Windows 10Python 3.8.10poetry 1.2.0dagster 1.0.16dagit 1.0.16poetry github:https://github.com/python-poe...dagster github:https://github.com/dagster-io...dagster 官网文档:https://docs.dagster.io/装置用 poetry 初始化我的项目后在 pyproject.toml 增加以下依赖,而后运行 poetry update # 国内镜像源(可选)[[tool.poetry.source]]name = "aliyun"url = "https://mirrors.aliyun.com/pypi/simple/"default = true[tool.poetry.dependencies]python = "^3.8.10"dagster = "~1.0.16"dagit = "~1.0.16"测试代码test_dagster.py # encoding: utf-8# author: qbit# date: 2022-11-09# summary: 测试 dagster,加减乘除from dagster import get_dagster_logger, job, op, assetloggerDag = get_dagster_logger()@opdef OpSeed(): r""" 种子函数,生成初始参数 """ return (2, 1)@opdef OpAdd(seed): r""" 读入参数做加法 """ x, y = seed result = x + y loggerDag.info(f"{x} + {y} = {result}") return result@opdef OpSubtract(x): r""" 读入参数减 1 """ result = x - 1 loggerDag.info(f"{x} - 1 = {result}") return result@opdef OpMultiply(x): r""" 读入参数乘以 2 """ result = x * 2 loggerDag.info(f"{x} * 2 = {result}") # raise Exception('haha') return result@opdef OpDivide(x, y): r""" 读入参数做除法 """ result = y / x loggerDag.info(f"{y} / {x} = {result}") return result@jobdef arithmetic(): r""" 四则运算 """ seed = OpSeed() addResult = OpAdd(seed) subResult = OpSubtract(addResult) mulResult = OpMultiply(addResult) OpDivide(subResult, mulResult)if __name__ == "__main__": result = arithmetic.execute_in_process( run_config={"loggers": {"console": {"config": {"log_level": "info"}}}})间接运行间接应用 python 运行 ...

November 9, 2022 · 3 min · jiezi

关于airflow:Airflow-从入门到精通03完整-ETL-实例

本节将讲述应用 Connection、MyqLOperator、XComs 来实现一个残缺的airflow ETL。一、将数据存入数据库的原始办法1、创立表CREATE database demodb;use demodb;create table stock_prices_stage(ticker varchar(30),as_of_date date,open_price double,high_price double,low_price double,close_price double) COMMENT = '股票价格缓冲区表';create table stock_prices(id int not null AUTO_INCREMENT,ticker varchar(30),as_of_date date COMMENT '以后日期',open_price double,high_price double,low_price double,close_price double,created_at timestamp default now(),updated_at timestamp default now(),primary key (id))COMMENT = '股票价格表';create index ids_stockprices on stock_prices(ticker, as_of_date);create index ids_stockpricestage on stock_prices_stage(ticker, as_of_date);二、应用 airflow Connection 治理数据库连贯信息在上一节代码的根底上,将保留到文件的数据转存到数据库中,V2版本的代码如下: download_stock_price_v2.py 2.1 传统连贯办法"""Example DAG demonstrating the usage of the BashOperator."""from datetime import timedeltafrom textwrap import dedentimport yfinance as yffrom airflow import DAGfrom airflow.operators.python import PythonOperatorfrom airflow.utils.dates import days_agofrom airflow.models import Variableimport mysql.connectordef download_price(*args, **context): stock_list = get_tickers(context) for ticker in stock_list: dat = yf.Ticker(ticker) hist = dat.history(period="1mo") # print(type(hist)) # print(hist.shape) # print(os.getcwd()) with open(get_file_path(ticker), 'w') as writer: hist.to_csv(writer, index=True) print("Finished downloading price data for " + ticker)def get_file_path(ticker): # NOT SAVE in distributed system return f'./{ticker}.csv'def load_price_data(ticker): with open(get_file_path(ticker), 'r') as reader: lines = reader.readlines() return [[ticker] + line.split(',')[:5] for line in lines if line[:4] != 'Date']def get_tickers(context): # 获取配置的变量Variables stock_list = Variable.get("stock_list_json", deserialize_json=True) # 如果有配置参数,则应用配置参数的数据(Trigger DAG with parameters) stocks = context["dag_run"].conf.get("stocks") if stocks: stock_list = stocks return stock_listdef save_to_mysql_stage(*args, **context): tickers = get_tickers(context) # 连贯数据库 mydb = mysql.connector.connect( host="98.14.13.15", user="root", password="Quant888", database="demodb", port=3307 ) mycursor = mydb.cursor() for ticker in tickers: val = load_price_data(ticker) print(f"{ticker} length={len(val)} {val[1]}") sql = """INSERT INTO stock_prices_stage (ticker, as_of_date, open_price, high_price, low_price, close_price) VALUES (%s,%s,%s,%s,%s,%s)""" mycursor.executemany(sql, val) mydb.commit() print(mycursor.rowcount, "record inserted.")default_args = { 'owner': 'airflow'}# [START instantiate_dag]with DAG( dag_id='download_stock_price_v2', default_args=default_args, description='download stock price and save to local csv files and save to database', schedule_interval=None, start_date=days_ago(2), tags=['quantdata'],) as dag: # [END instantiate_dag] dag.doc_md = """ This DAG download stock price """ download_task = PythonOperator( task_id="download_prices", python_callable=download_price, provide_context=True ) save_to_mysql_task = PythonOperator( task_id="save_to_database", python_callable=save_to_mysql_stage, provide_context=True ) download_task >> save_to_mysql_task而后在 airflow 后盾手动触发执行,前两次执行失败,后边调试后,执行胜利了 ...

September 7, 2021 · 7 min · jiezi

关于airflow:airflow-2x-安装记录qbit

前言airflow 是 DAG(有向无环图)的工作管理系统,简略的了解就是一个高级版的 crontab。airflow 解决了 crontab 无奈解决的工作依赖问题。环境与组件Ubuntu 20.04Python-3.8(Anaconda3-2020.11-Linux-x86_64)MySQL 8.0apache-airflow 2.0.2装置步骤创立账号 sudo useradd airflow -m -s /bin/bashsudo passwd airflow切换账号 su airflow配置 Anaconda 环境变量 # ~/.bashrcexport PATH=/anaconda/anaconda3/bin:$PATH配置 pip 国内镜像 pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple/装置 airflow # 全家桶(master)pip3 install "apache-airflow[all]~=2.0.2"# OR 选择性装置pip3 install "apache-airflow[async,mysql,rabbitmq,celery,dask]~=2.0.2"为 airflow 增加 PATH 环境变量 # 在 /home/airflow/.bashrc 文件尾追加以下内容:export PATH=/home/airflow/.local/bin:$PATH查看 airflow 版本并创立 airflow 的 HOME 目录 # 默认 ~/airflow 目录airflow version设置 Ubuntu 零碎时区 timedatectl set-timezone Asia/Shanghai至此,装置结束MySQL 配置创立数据库和用户 CREATE DATABASE airflow CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;创立用户 ...

May 11, 2021 · 1 min · jiezi

Airflowv110任务调度平台的安装教程

0.背景真的是想不通,Airflow不论社区活跃度还是Github的star数都是远胜于Azkaban还有EasyScheduler的,但是为何却连一个完备的安装教程都没有呢?是我的需求太高?真的是心累不已,整整把搜索引擎还有youtube翻来覆去也没让我感到满足……不过好在,一步一坑一脚印的最终搭建连通好了环境以及Operator。好了,废话不多说,开始Airflow今日份安装教程。 1.安装前准备工作安装版本说明安装工具版本用途Python3.6.5安装airflow及其依赖包、开发airflow的dag使用MySQL5.7作为airflow的元数据库Airflow1.10.0任务调度平台请选择一台干净的物理机或者云主机。不然,产生任何多余影响或者后果,本人概不负责! 请确保你熟悉Linux环境及基本操作命令,顺便会一些Python基础命令,如果不熟悉,请出门左转充完电再来2.安装Python3Python3的安装可以参考我之前的文章,在此不再敖述 3.安装MySQL3年前也写过一个关于Centos安装MySQL的教程,但是虽然实用,但是内容太久,在此我们用最简方式快速安装MySQL并配置用户(当然,如果你用现成的 RDS 也可以,省去了安装过程,可直接跳转至为Airflow建库建用户步骤了)。 老规矩,卸载mariadbrpm -qa | grep mariadbrpm -e --nodeps mariadb-libs-5.5.52-1.el7.x86_64sudo rpm -e --nodeps mariadb-libs-5.5.52-1.el7.x86_64rpm -qa | grep mariadb下载mysql的repo源wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm通过rpm安装sudo rpm -ivh mysql-community-release-el7-5.noarch.rpm安装mysql并授权sudo yum install mysql-serversudo chown -R mysql:mysql /var/lib/mysql启动mysqlservice mysqld start__ 以下操作均在mysql客户端上进行操作,首先需要连接并登录mysql。 用root用户连接登录mysql: mysql -uroot重置mysql密码use mysql;update user set password=password('root') where user='root';flush privileges;为Airflow建库、建用户建库: create database airflow;建用户: create user 'airflow'@'%' identified by 'airflow';create user 'airflow'@'localhost' identified by 'airflow';为用户授权: grant all on airflow.* to 'airflow'@'%';flush privileges;exit;__ ...

June 14, 2019 · 2 min · jiezi

ApacheCN 翻译活动进度公告 2019.3.10

【主页】 apachecn.org【Github】@ApacheCN暂时下线: 社区暂时下线: cwiki 知识库自媒体平台微博:@ApacheCN知乎:@ApacheCNCSDN简书OSChina博客园We are ApacheCN Open Source Organization, not ASF! We are fans of AI, and have no relationship with ASF!合作or侵权,请联系【fonttian】fonttian@gmail.com | 请抄送一份到 apachecn@163.comPyTorch 1.0 中文文档参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…教程部分:认领:37/37,翻译:32/37;文档部分:认领:37/39,翻译:34/39章节贡献者进度教程部分–Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%What is PyTorch?@bat67100%Autograd: Automatic Differentiation@bat67100%Neural Networks@bat67100%Training a Classifier@bat67100%Optional: Data Parallelism@bat67100%Data Loading and Processing Tutorial@yportne13100%Learning PyTorch with Examples@bat67100%Transfer Learning Tutorial@jiangzhonglian100%Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%Saving and Loading Models@bruce1408 What is torch.nn really?@lhc741100%Finetuning Torchvision Models@ZHHAYO100%Spatial Transformer Networks Tutorial@PEGASUS1993100%Neural Transfer Using PyTorch@bdqfork100%Adversarial Example Generation@cangyunye100%Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%Chatbot Tutorial@a625687551100%Generating Names with a Character-Level RNN@hhxx2015100%Classifying Names with a Character-Level RNN@hhxx2015100%Deep Learning for NLP with Pytorch@bruce1408 Introduction to PyTorch@guobaoyo100%Deep Learning with PyTorch@bdqfork100%Word Embeddings: Encoding Lexical Semantics@sight007100%Sequence Models and Long-Short Term Memory Networks@ETCartman100%Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@JohnJiangLA Translation with a Sequence to Sequence Network and Attention@mengfu188100%DCGAN Tutorial@wangshuai9517100%Reinforcement Learning (DQN) Tutorial@friedhelm739100%Creating Extensions Using numpy and scipy@cangyunye100%Custom C++ and CUDA Extensions@Lotayou Extending TorchScript with Custom C++ Operators@cloudyyyyy Writing Distributed Applications with PyTorch@firdameng100%PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%ONNX Live Tutorial@PEGASUS1993100%Loading a PyTorch Model in C++@talengu100%Using the PyTorch C++ Frontend@solerji100%文档部分–Autograd mechanics@PEGASUS1993100%Broadcasting semantics@PEGASUS1993100%CUDA semantics@jiangzhonglian100%Extending PyTorch@PEGASUS1993100%Frequently Asked Questions@PEGASUS1993100%Multiprocessing best practices@cvley100%Reproducibility@WyattHuang1 Serialization semantics@yuange250100%Windows FAQ@PEGASUS1993100%torch torch.Tensor@hijkzzz100%Tensor Attributes@yuange250100%Type Info@PEGASUS1993100%torch.sparse@hijkzzz100%torch.cuda@bdqfork100%torch.Storage@yuange250100%torch.nn@yuange250 torch.nn.functional@hijkzzz100%torch.nn.init@GeneZC100%torch.optim@qiaokuoyuan Automatic differentiation package - torch.autograd@gfjiangly100%Distributed communication package - torch.distributed@univeryinli100%Probability distributions - torch.distributions@hijkzzz100%Torch Script@keyianpai100%Multiprocessing package - torch.multiprocessing@hijkzzz100%torch.utils.bottleneck@belonHan100%torch.utils.checkpoint@belonHan100%torch.utils.cpp_extension@belonHan100%torch.utils.data@BXuan694100%torch.utils.dlpack@kunwuz100%torch.hub@kunwuz100%torch.utils.model_zoo@BXuan694100%torch.onnx@guobaoyo100%Distributed communication package (deprecated) - torch.distributed.deprecated torchvision Reference@BXuan694100%torchvision.datasets@BXuan694100%torchvision.models@BXuan694100%torchvision.transforms@BXuan694100%torchvision.utils@BXuan694100%HBase 3.0 中文参考指南参与方式:https://github.com/apachecn/h…整体进度:https://github.com/apachecn/h…项目仓库:https://github.com/apachecn/h…认领:13/31,翻译:9/31章节译者进度Preface@xixici100%Getting Started@xixici100%Apache HBase Configuration@xixici100%Upgrading@xixici100%The Apache HBase Shell@xixici100%Data Model@Winchester-Yi HBase and Schema Design@RaymondCode100%RegionServer Sizing Rules of Thumb HBase and MapReduce@BridgetLai Securing Apache HBase Architecture@RaymondCode In-memory Compaction Backup and Restore Synchronous Replication Apache HBase APIs@xixici100%Apache HBase External APIs@xixici100%Thrift API and Filter Language@xixici100%HBase and Spark@TsingJyujing Apache HBase Coprocessors Apache HBase Performance Tuning Troubleshooting and Debugging Apache HBase Apache HBase Case Studies Apache HBase Operational Management Building and Developing Apache HBase Unit Testing HBase Applications Protobuf in HBase Procedure Framework (Pv2): HBASE-12439 AMv2 Description for Devs ZooKeeper Community Appendix AirFlow 中文文档参与方式:https://github.com/apachecn/a…整体进度:https://github.com/apachecn/a…项目仓库:https://github.com/apachecn/a…认领:25/30,翻译:24/30。章节贡献者进度1 项目@zhongjiajie100%2 协议-100%3 快速开始@ImPerat0R_100%4 安装@Thinking Chen100%5 教程@ImPerat0R_100%6 操作指南@ImPerat0R_100%7 设置配置选项@ImPerat0R_100%8 初始化数据库后端@ImPerat0R_100%9 使用操作器@ImPerat0R_100%10 管理连接@ImPerat0R_100%11 保护连接@ImPerat0R_100%12 写日志@ImPerat0R_100%13 使用Celery扩大规模@ImPerat0R_100%14 使用Dask扩展@ImPerat0R_100%15 使用Mesos扩展(社区贡献)@ImPerat0R_100%16 使用systemd运行Airflow@ImPerat0R_100%17 使用upstart运行Airflow@ImPerat0R_100%18 使用测试模式配置@ImPerat0R_100%19 UI /截图@ImPerat0R_100%20 概念@ImPerat0R_100%21 数据分析@ImPerat0R_100%22 命令行接口@ImPerat0R_100%23 调度和触发器@Ray100%24 插件@ImPerat0R_100%25 安全 26 时区 27 实验性 Rest API@ImPerat0R_100%28 集成 29 Lineage 30 常见问题@zhongjiajie 31 API 参考 OpenCV 4.0 中文文档参与方式:https://github.com/apachecn/o…整体进度:https://github.com/apachecn/o…项目仓库:https://github.com/apachecn/o…认领:47/51,翻译:17/51。章节贡献者进度1. 简介@wstone00111.1 OpenCV-Python教程简介-100%1.2 安装OpenCV—Python-2. GUI功能@ranxx2.1 图像入门-100%2.2 视频入门-100%2.3 绘图功能-100%2.4 鼠标作为画笔-100%2.5 作为调色板的跟踪栏-100%3. 核心操作@luxinfeng3.1 图像基本操作-100%3.2 图像的算术运算-100%3.3 性能测量和改进技术-100%4. 图像处理@friedhelm7394.1 更改颜色空间-100%4.2 图像的几何变换-100%4.3 图像阈值-4.4 平滑图像-4.5 形态转换-4.6 图像梯度-4.7 Canny边缘检测-4.8 影像金字塔-4.9 轮廓-4.10 直方图-4.11 图像转换-4.12 模板匹配-4.13 霍夫线变换-4.14 霍夫圆变换-4.15 基于分水岭算法的图像分割-基于GrabCut算法的交互式前景提取-5. 特征检测和描述@3lackrush5.1 了解功能-100%5.2 Harris角点检测-5.3 Shi-Tomasi角点检测和追踪的良好特征-5.4 SIFT简介(尺度不变特征变换)-5.5 SURF简介(加速鲁棒特性)-5.6 角点检测的FAST算法-5.7 简介(二进制鲁棒独立基本特征)-5.8 ORB(定向快速和快速旋转)-5.9 特征匹配-5.10 特征匹配+ Homography查找对象-6. 视频分析@xmmmmmovo6.1 Meanshift和Camshift-100%6.2 光流-100%6.3 背景减法-100%7. 相机校准和3D重建 7.1 相机校准 7.2 姿势估计 7.3 极线几何 7.4 立体图像的深度图 8. 机器学习@wstone00118.1 K-最近邻-8.2 支持向量机(SVM)-8.3 K-Means聚类-9. 计算摄影@ranxx9.1 图像去噪-9.2 图像修复-9.3 高动态范围(HDR)-10. 目标检测@jiangzhonglian 10.1 使用Haar Cascades进行人脸检测-100%11. OpenCV-Python绑定@daidai21 11.1 OpenCV-Python绑定如何工作?-100%UCB CS61b:Java 中的数据结构参与方式:https://github.com/apachecn/c…整体进度:https://github.com/apachecn/c…项目仓库:https://github.com/apachecn/c…认领:2/12,翻译:1/12。标题译者进度一、算法复杂度@leader402二、抽象数据类型@Allenyep100%三、满足规范 四、序列和它们的实现 五、树 六、搜索树 七、哈希 八、排序和选择 九、平衡搜索 十、并发和同步 十一、伪随机序列 十二、图 UCB Prob140:面向数据科学的概率论参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…认领:23/25,翻译:19/25。标题译者翻译进度一、基础飞龙100%二、计算几率飞龙100%三、随机变量飞龙100%四、事件之间的关系@biubiubiuboomboomboom100%五、事件集合@PEGASUS1993>0%六、随机计数@viviwong100%七、泊松化@YAOYI626100%八、期望@PEGASUS199350%九、条件(续)@YAOYI626100%十、马尔科夫链喵十八100%十一、马尔科夫链(续)喵十八100%十二、标准差缺只萨摩 100%十三、方差和协方差缺只萨摩 100%十四、中心极限定理喵十八100%十五、连续分布@ThunderboltSmile十六、变换十七、联合密度@Winchester-Yi100%十八、正态和 Gamma 族@Winchester-Yi100%十九、和的分布平淡的天100%二十、估计方法平淡的天100%二十一、Beta 和二项@lvzhetx100%二十二、预测 50%二十三、联合正态随机变量@JUNE951234二十四、简单线性回归@ThomasCai100%二十五、多元回归@lanhaixuan100%翻译征集要求:机器学习/数据科学相关或者编程相关原文必须在互联网上开放不能只提供 PDF 格式(我们实在不想把精力都花在排版上)请先搜索有没有人翻译过请回复本文。赞助我们 ...

March 10, 2019 · 3 min · jiezi

ApacheCN 翻译活动进度公告 2019.2.25

【主页】 apachecn.org【Github】@ApacheCN暂时下线: 社区暂时下线: cwiki 知识库自媒体平台微博:@ApacheCN知乎:@ApacheCNCSDN简书OSChina博客园我们不是 Apache 的官方组织/机构/团体,只是 Apache 技术栈(以及 AI)的爱好者!合作or侵权,请联系【fonttian】fonttian@gmail.com | 请抄送一份到 apachecn@163.comPyTorch 1.0 中文文档参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…教程部分:认领:36/37,翻译:29/37;文档部分:认领:34/39,翻译:23/39章节贡献者进度教程部分–Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%What is PyTorch?@bat67100%Autograd: Automatic Differentiation@bat67100%Neural Networks@bat67100%Training a Classifier@bat67100%Optional: Data Parallelism@bat67100%Data Loading and Processing Tutorial@yportne13100%Learning PyTorch with Examples@bat67100%Transfer Learning Tutorial@jiangzhonglian100%Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%Saving and Loading Models@sfyumi What is torch.nn really?@lhc741100%Finetuning Torchvision Models@ZHHAYO100%Spatial Transformer Networks Tutorial@PEGASUS1993100%Neural Transfer Using PyTorch@bdqfork100%Adversarial Example Generation@cangyunye100%Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%Chatbot Tutorial@a625687551100%Generating Names with a Character-Level RNN@hhxx2015100%Classifying Names with a Character-Level RNN@hhxx2015100%Deep Learning for NLP with Pytorch@BreezeHavana Introduction to PyTorch@guobaoyo100%Deep Learning with PyTorch@bdqfork100%Word Embeddings: Encoding Lexical Semantics@sight007100%Sequence Models and Long-Short Term Memory Networks@ETCartman100%Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@JohnJiangLA Translation with a Sequence to Sequence Network and Attention@mengfu188100%DCGAN Tutorial@wangshuai9517 Reinforcement Learning (DQN) Tutorial@BreezeHavana Creating Extensions Using numpy and scipy@cangyunye100%Custom C++ and CUDA Extensions@Lotayou Extending TorchScript with Custom C++ Operators Writing Distributed Applications with PyTorch@firdameng PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%ONNX Live Tutorial@PEGASUS1993100%Loading a PyTorch Model in C++@talengu100%Using the PyTorch C++ Frontend@solerji100%文档部分–Autograd mechanics@PEGASUS1993100%Broadcasting semantics@PEGASUS1993100%CUDA semantics@jiangzhonglian100%Extending PyTorch@PEGASUS1993 Frequently Asked Questions@PEGASUS1993100%Multiprocessing best practices@cvley100%Reproducibility@WyattHuang1 Serialization semantics@yuange250100%Windows FAQ@PEGASUS1993100%torch@ZHHAYO torch.Tensor@hijkzzz100%Tensor Attributes@yuange250100%Type Info@PEGASUS1993100%torch.sparse@hijkzzz100%torch.cuda@bdqfork100%torch.Storage@yuange250100%torch.nn@yuange250 torch.nn.functional@hijkzzz100%torch.nn.init@GeneZC100%torch.optim@qiaokuoyuan Automatic differentiation package - torch.autograd@gfjiangly Distributed communication package - torch.distributed Probability distributions - torch.distributions@hijkzzz Torch Script Multiprocessing package - torch.multiprocessing@hijkzzz100%torch.utils.bottleneck@belonHan torch.utils.checkpoint@belonHan torch.utils.cpp_extension@belonHan torch.utils.data@BXuan694 torch.utils.dlpack torch.hub torch.utils.model_zoo@BXuan694100%torch.onnx@guobaoyo100%Distributed communication package (deprecated) - torch.distributed.deprecated torchvision Reference@BXuan694100%torchvision.datasets@BXuan694100%torchvision.models@BXuan694100%torchvision.transforms@BXuan694100%torchvision.utils@BXuan694100%HBase 3.0 中文参考指南参与方式:https://github.com/apachecn/h…整体进度:https://github.com/apachecn/h…项目仓库:https://github.com/apachecn/h…认领:3/31,翻译:1/31章节译者进度Preface Getting Started Apache HBase Configuration Upgrading The Apache HBase Shell Data Model@Winchester-Yi HBase and Schema Design@RaymondCode100%RegionServer Sizing Rules of Thumb HBase and MapReduce Securing Apache HBase Architecture In-memory Compaction Backup and Restore Synchronous Replication Apache HBase APIs Apache HBase External APIs Thrift API and Filter Language HBase and Spark@TsingJyujing Apache HBase Coprocessors Apache HBase Performance Tuning Troubleshooting and Debugging Apache HBase Apache HBase Case Studies Apache HBase Operational Management Building and Developing Apache HBase Unit Testing HBase Applications Protobuf in HBase Procedure Framework (Pv2): HBASE-12439 AMv2 Description for Devs ZooKeeper Community Appendix AirFlow 中文文档参与方式:https://github.com/apachecn/a…整体进度:https://github.com/apachecn/a…项目仓库:https://github.com/apachecn/a…认领:24/30,翻译:24/30。章节贡献者进度1 项目@zhongjiajie100%2 协议-100%3 快速开始@ImPerat0R_100%4 安装@Thinking Chen100%5 教程@ImPerat0R_100%6 操作指南@ImPerat0R_100%7 设置配置选项@ImPerat0R_100%8 初始化数据库后端@ImPerat0R_100%9 使用操作器@ImPerat0R_100%10 管理连接@ImPerat0R_100%11 保护连接@ImPerat0R_100%12 写日志@ImPerat0R_100%13 使用Celery扩大规模@ImPerat0R_100%14 使用Dask扩展@ImPerat0R_100%15 使用Mesos扩展(社区贡献)@ImPerat0R_100%16 使用systemd运行Airflow@ImPerat0R_100%17 使用upstart运行Airflow@ImPerat0R_100%18 使用测试模式配置@ImPerat0R_100%19 UI /截图@ImPerat0R_100%20 概念@ImPerat0R_100%21 数据分析@ImPerat0R_100%22 命令行接口@ImPerat0R_100%23 调度和触发器@Ray100%24 插件@ImPerat0R_100%25 安全 26 时区 27 实验性 Rest API@ImPerat0R_100%28 集成 29 Lineage 30 常见问题 31 API 参考 OpenCV 4.0 中文文档参与方式:https://github.com/apachecn/o…整体进度:https://github.com/apachecn/o…项目仓库:https://github.com/apachecn/o…认领:0/51,翻译:0/51。章节贡献者进度1. 简介 1.1 OpenCV-Python教程简介 1.2 安装OpenCV—Python 2. GUI功能 2.1 图像入门 2.2 视频入门 2.3 绘图功能 2.4 鼠标作为画笔 2.5 作为调色板的跟踪栏 3. 核心操作 3.1 图像基本操作 3.2 图像的算术运算 3.3 性能测量和改进技术 4. 图像处理 4.1 更改颜色空间 4.2 图像的几何变换 4.3 图像阈值 4.4 平滑图像 4.5 形态转换 4.6 图像梯度 4.7 Canny边缘检测 4.8 影像金字塔 4.9 轮廓 4.10 直方图 4.11 图像转换 4.12 模板匹配 4.13 霍夫线变换 4.14 霍夫圆变换 4.15 基于分水岭算法的图像分割 基于GrabCut算法的交互式前景提取 5. 特征检测和描述 5.1 了解功能 5.2 Harris角点检测 5.3 Shi-Tomasi角点检测和追踪的良好特征 5.4 SIFT简介(尺度不变特征变换) 5.5 SURF简介(加速鲁棒特性) 5.6 角点检测的FAST算法 5.7 简介(二进制鲁棒独立基本特征) 5.8 ORB(定向快速和快速旋转) 5.9 特征匹配 5.10 特征匹配+ Homography查找对象 6. 视频分析 6.1 Meanshift和Camshift 6.2 光流 6.3 背景减法 7. 相机校准和3D重建 7.1 相机校准 7.2 姿势估计 7.3 极线几何 7.4 立体图像的深度图 8. 机器学习 8.1 K-最近邻 8.2 支持向量机(SVM) 8.3 K-Means聚类 9. 计算摄影 9.1 图像去噪 9.2 图像修复 9.3 高动态范围(HDR) 10. 目标检测 10.1 使用Haar Cascades进行人脸检测 11. OpenCV-Python绑定 11.1 OpenCV-Python绑定如何工作? UCB CS61b:Java 中的数据结构参与方式:https://github.com/apachecn/c…整体进度:https://github.com/apachecn/c…项目仓库:https://github.com/apachecn/c…认领:0/12,翻译:0/12。标题译者进度一、算法复杂度 二、抽象数据类型 三、满足规范 四、序列和它们的实现 五、树 六、搜索树 七、哈希 八、排序和选择 九、平衡搜索 十、并发和同步 十一、伪随机序列 十二、图 UCB Prob140:面向数据科学的概率论参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…认领:23/25,翻译:19/25。标题译者翻译进度一、基础飞龙100%二、计算几率飞龙100%三、随机变量飞龙100%四、事件之间的关系@biubiubiuboomboomboom100%五、事件集合@PEGASUS1993>0%六、随机计数@viviwong100%七、泊松化@YAOYI626100%八、期望@PEGASUS199350%九、条件(续)@YAOYI626100%十、马尔科夫链喵十八100%十一、马尔科夫链(续)喵十八100%十二、标准差缺只萨摩 100%十三、方差和协方差缺只萨摩 100%十四、中心极限定理喵十八100%十五、连续分布@ThunderboltSmile十六、变换十七、联合密度@Winchester-Yi100%十八、正态和 Gamma 族@Winchester-Yi100%十九、和的分布平淡的天100%二十、估计方法平淡的天100%二十一、Beta 和二项@lvzhetx100%二十二、预测@lvzhetx50%二十三、联合正态随机变量二十四、简单线性回归@ThomasCai100%二十五、多元回归@lanhaixuan100%翻译征集要求:机器学习/数据科学相关或者编程相关原文必须在互联网上开放不能只提供 PDF 格式(我们实在不想把精力都花在排版上)请先搜索有没有人翻译过请回复本文。赞助我们 ...

February 25, 2019 · 3 min · jiezi

ApacheCN 翻译活动进度公告 2019.2.18

【主页】 apachecn.org【Github】@ApacheCN暂时下线: 社区暂时下线: cwiki 知识库自媒体平台微博:@ApacheCN知乎:@ApacheCNCSDN简书OSChina博客园我们不是 Apache 的官方组织/机构/团体,只是 Apache 技术栈(以及 AI)的爱好者!合作or侵权,请联系【fonttian】<fonttian@gmail.com> | 请抄送一份到 <apachecn@163.com>PyTorch 1.0 中文文档和教程教程部分:认领:36/37,翻译:28/37;文档部分:认领:29/39,翻译:15/39参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…章节贡献者进度教程部分–Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%What is PyTorch?@bat67100%Autograd: Automatic Differentiation@bat67100%Neural Networks@bat67100%Training a Classifier@bat67100%Optional: Data Parallelism@bat67100%Data Loading and Processing Tutorial@yportne13100%Learning PyTorch with Examples@bat67100%Transfer Learning Tutorial@jiangzhonglian100%Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%Saving and Loading Models@sfyumi What is <cite>torch.nn</cite> really?@lhc741 Finetuning Torchvision Models@ZHHAYO100%Spatial Transformer Networks Tutorial@PEGASUS1993100%Neural Transfer Using PyTorch@bdqfork100%Adversarial Example Generation@cangyunye100%Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%Chatbot Tutorial@a625687551100%Generating Names with a Character-Level RNN@hhxx2015100%Classifying Names with a Character-Level RNN@hhxx2015100%Deep Learning for NLP with Pytorch@BreezeHavana Introduction to PyTorch@guobaoyo100%Deep Learning with PyTorch@bdqfork100%Word Embeddings: Encoding Lexical Semantics@sight007100%Sequence Models and Long-Short Term Memory Networks@ETCartman100%Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@JohnJiangLA Translation with a Sequence to Sequence Network and Attention@mengfu188100%DCGAN Tutorial@wangshuai9517 Reinforcement Learning (DQN) Tutorial@BreezeHavana Creating Extensions Using numpy and scipy@cangyunye100%Custom C++ and CUDA Extensions@Lotayou Extending TorchScript with Custom C++ Operators Writing Distributed Applications with PyTorch@firdameng PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%ONNX Live Tutorial@PEGASUS1993100%Loading a PyTorch Model in C++@talengu100%Using the PyTorch C++ Frontend@solerji100%文档部分–Autograd mechanics@PEGASUS1993100%Broadcasting semantics@PEGASUS1993100%CUDA semantics@jiangzhonglian100%Extending PyTorch@PEGASUS1993 Frequently Asked Questions@PEGASUS1993 Multiprocessing best practices@cvley100%Reproducibility@WyattHuang1 Serialization semantics@yuange250100%Windows FAQ@PEGASUS1993 torch@ZHHAYO torch.Tensor@hijkzzz100%Tensor Attributes@yuange250100%Type Info@PEGASUS1993100%torch.sparse@hijkzzz100%torch.cuda@bdqfork100%torch.Storage@yuange250100%torch.nn@yuange250 torch.nn.functional@hijkzzz100%torch.nn.init@GeneZC100%torch.optim@qiaokuoyuan Automatic differentiation package - torch.autograd@gfjiangly Distributed communication package - torch.distributed Probability distributions - torch.distributions@hijkzzz Torch Script Multiprocessing package - torch.multiprocessing@hijkzzz100%torch.utils.bottleneck torch.utils.checkpoint torch.utils.cpp_extension torch.utils.data torch.utils.dlpack torch.hub torch.utils.model_zoo torch.onnx@guobaoyo100%Distributed communication package (deprecated) - torch.distributed.deprecated torchvision Reference@BXuan694 torchvision.datasets@BXuan694 torchvision.models@BXuan694 torchvision.transforms@BXuan694 torchvision.utils@BXuan694 HBase 3.0 中文参考指南认领:2/31,翻译:0/31参与方式:https://github.com/apachecn/h…整体进度:https://github.com/apachecn/h…项目仓库:https://github.com/apachecn/h…章节译者进度Preface Getting Started Apache HBase Configuration Upgrading The Apache HBase Shell Data Model HBase and Schema Design@RaymondCode RegionServer Sizing Rules of Thumb HBase and MapReduce Securing Apache HBase Architecture In-memory Compaction Backup and Restore Synchronous Replication Apache HBase APIs Apache HBase External APIs Thrift API and Filter Language HBase and Spark@TsingJyujing Apache HBase Coprocessors Apache HBase Performance Tuning Troubleshooting and Debugging Apache HBase Apache HBase Case Studies Apache HBase Operational Management Building and Developing Apache HBase Unit Testing HBase Applications Protobuf in HBase Procedure Framework (Pv2): HBASE-12439 AMv2 Description for Devs ZooKeeper Community Appendix Airflow 中文文档认领:23/30,翻译:23/30。参与方式:https://github.com/apachecn/a…整体进度:https://github.com/apachecn/a…项目仓库:https://github.com/apachecn/a…章节贡献者进度1 项目 2 协议-100%3 快速开始@ImPerat0R_100%4 安装@Thinking Chen100%5 教程@ImPerat0R_100%6 操作指南@ImPerat0R_100%7 设置配置选项@ImPerat0R_100%8 初始化数据库后端@ImPerat0R_100%9 使用操作器@ImPerat0R_100%10 管理连接@ImPerat0R_100%11 保护连接@ImPerat0R_100%12 写日志@ImPerat0R_100%13 使用Celery扩大规模@ImPerat0R_100%14 使用Dask扩展@ImPerat0R_100%15 使用Mesos扩展(社区贡献)@ImPerat0R_100%16 使用systemd运行Airflow@ImPerat0R_100%17 使用upstart运行Airflow@ImPerat0R_100%18 使用测试模式配置@ImPerat0R_100%19 UI /截图@ImPerat0R_100%20 概念@ImPerat0R_100%21 数据分析@ImPerat0R_100%22 命令行接口@ImPerat0R_100%23 调度和触发器@Ray100%24 插件@ImPerat0R_100%25 安全 26 时区 27 实验性 Rest API@ImPerat0R_100%28 集成 29 Lineage 30 常见问题 31 API 参考 UCB CS61b Java 中的数据结构认领:0/12,翻译:0/12参与方式:https://github.com/apachecn/c…整体进度:https://github.com/apachecn/c…项目仓库:https://github.com/apachecn/c…标题译者进度一、算法复杂度 二、抽象数据类型 三、满足规范 四、序列和它们的实现 五、树 六、搜索树 七、哈希 八、排序和选择 九、平衡搜索 十、并发和同步 十一、伪随机序列 十二、图 UCB Prob140 面向数据科学的概率论认领:23/25,翻译:17/25参与方式:https://github.com/apachecn/p…整体进度:https://github.com/apachecn/p…项目仓库:https://github.com/apachecn/p…标题译者翻译进度一、基础飞龙100%二、计算几率飞龙100%三、随机变量飞龙100%四、事件之间的关系@biubiubiuboomboomboom100%五、事件集合@PEGASUS1993>0%六、随机计数@viviwong100%七、泊松化@YAOYI626100%八、期望@PEGASUS199350%九、条件(续)@YAOYI626100%十、马尔科夫链喵十八100%十一、马尔科夫链(续)喵十八100%十二、标准差缺只萨摩 100%十三、方差和协方差缺只萨摩 100%十四、中心极限定理喵十八100%十五、连续分布@ThunderboltSmile十六、变换十七、联合密度@Winchester-Yi100%十八、正态和 Gamma 族@Winchester-Yi100%十九、和的分布平淡的天100%二十、估计方法平淡的天100%二十一、Beta 和二项@lvzhetx100%二十二、预测@lvzhetx50%二十三、联合正态随机变量二十四、简单线性回归@ThomasCai100%二十五、多元回归@lanhaixuan100%翻译征集要求:机器学习/数据科学相关或者编程相关原文必须在互联网上开放不能只提供 PDF 格式(我们实在不想把精力都花在排版上)请先搜索有没有人翻译过请回复本文。赞助我们 ...

February 18, 2019 · 2 min · jiezi