2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的无力竞争对手,卷积神经网络目前是计算机视觉畛域的最先进技术,广泛应用于许多图像识别利用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)简直四倍。
ViT是如何工作的?ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 规范 ViT stem 采纳 16 *16 卷积和 16 步长。
CNN 将原始像素转换为特色图。而后,tokenizer 将特色图转换为一系列令牌,这些令牌随后被送入transformer。而后transformer应用注意力办法生成一系列输入令牌。
projector 最终将输入令牌标记从新连贯到特色图。
vision transformer模型的整体架构如下:
将图像拆分为补丁(固定大小)展平图像块从这些展平的图像块中创立低维线性嵌入包含地位嵌入将序列作为输出发送到transformer编码器应用图像标签预训练 ViT 模型,而后在宽泛的数据集上进行训练在图像分类的上游数据集进行微调可视化注意力ViT中最次要的就是注意力机制,所以可视化注意力就成为理解ViT的重要步骤,所以咱们这里介绍如何可视化ViT中的注意力
导入库
importos importtorch importnumpyasnp importmath fromfunctoolsimportpartial importtorch importtorch.nnasnn importipywidgetsaswidgets importio fromPILimportImage fromtorchvisionimporttransforms importmatplotlib.pyplotasplt importnumpyasnp fromtorchimportnn importwarnings warnings.filterwarnings("ignore")创立一个VIT
deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return_no_grad_trunc_normal_(tensor, mean, std, a, b) def_no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf defnorm_cdf(x): # Computes standard normal cumulative distribution function return (1.+math.erf(x/math.sqrt(2.))) /2. defdrop_path(x, drop_prob: float=0., training: bool=False): ifdrop_prob==0.ornottraining: returnx keep_prob=1-drop_prob # work with diff dim tensors, not just 2D ConvNets shape= (x.shape[0],) + (1,) * (x.ndim-1) random_tensor=keep_prob+ \ torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output=x.div(keep_prob) *random_tensor returnoutput classDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def__init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob=drop_prob defforward(self, x): returndrop_path(x, self.drop_prob, self.training) classMlp(nn.Module): def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features=out_featuresorin_features hidden_features=hidden_featuresorin_features self.fc1=nn.Linear(in_features, hidden_features) self.act=act_layer() self.fc2=nn.Linear(hidden_features, out_features) self.drop=nn.Dropout(drop) defforward(self, x): x=self.fc1(x) x=self.act(x) x=self.drop(x) x=self.fc2(x) x=self.drop(x) returnx classAttention(nn.Module): def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads=num_heads head_dim=dim//num_heads self.scale=qk_scaleorhead_dim**-0.5 self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias) self.attn_drop=nn.Dropout(attn_drop) self.proj=nn.Linear(dim, dim) self.proj_drop=nn.Dropout(proj_drop) defforward(self, x): B, N, C=x.shape qkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C// self.num_heads).permute(2, 0, 3, 1, 4) q, k, v=qkv[0], qkv[1], qkv[2] attn= (q@k.transpose(-2, -1)) *self.scale attn=attn.softmax(dim=-1) attn=self.attn_drop(attn) x= (attn@v).transpose(1, 2).reshape(B, N, C) x=self.proj(x) x=self.proj_drop(x) returnx, attn classBlock(nn.Module): def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1=norm_layer(dim) self.attn=Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path=DropPath( drop_path) ifdrop_path>0.elsenn.Identity() self.norm2=norm_layer(dim) mlp_hidden_dim=int(dim*mlp_ratio) self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) defforward(self, x, return_attention=False): y, attn=self.attn(self.norm1(x)) ifreturn_attention: returnattn x=x+self.drop_path(y) x=x+self.drop_path(self.mlp(self.norm2(x))) returnx classPatchEmbed(nn.Module): """ Image to Patch Embedding """ def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches= (img_size//patch_size) * (img_size//patch_size) self.img_size=img_size self.patch_size=patch_size self.num_patches=num_patches self.proj=nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) defforward(self, x): B, C, H, W=x.shape x=self.proj(x).flatten(2).transpose(1, 2) returnx classVisionTransformer(nn.Module): """ Vision Transformer """ def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features=self.embed_dim=embed_dim self.patch_embed=PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches=self.patch_embed.num_patches self.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed=nn.Parameter( torch.zeros(1, num_patches+1, embed_dim)) self.pos_drop=nn.Dropout(p=drop_rate) # stochastic depth decay rule dpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)] self.blocks=nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) foriinrange(depth)]) self.norm=norm_layer(embed_dim) # Classifier head self.head=nn.Linear( embed_dim, num_classes) ifnum_classes>0elsenn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def_init_weights(self, m): ifisinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) ifisinstance(m, nn.Linear) andm.biasisnotNone: nn.init.constant_(m.bias, 0) elifisinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) definterpolate_pos_encoding(self, x, w, h): npatch=x.shape[1] -1 N=self.pos_embed.shape[1] -1 ifnpatch==Nandw==h: returnself.pos_embed class_pos_embed=self.pos_embed[:, 0] patch_pos_embed=self.pos_embed[:, 1:] dim=x.shape[-1] w0=w//self.patch_embed.patch_size h0=h//self.patch_embed.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0=w0+0.1, h0+0.1 patch_pos_embed=nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int( math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)), mode='bicubic', ) assertint( w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1] patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) defprepare_tokens(self, x): B, nc, w, h=x.shape x=self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens=self.cls_token.expand(B, -1, -1) x=torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x=x+self.interpolate_pos_encoding(x, w, h) returnself.pos_drop(x) defforward(self, x): x=self.prepare_tokens(x) forblkinself.blocks: x=blk(x) x=self.norm(x) returnx[:, 0] defget_last_selfattention(self, x): x=self.prepare_tokens(x) fori, blkinenumerate(self.blocks): ifi<len(self.blocks) -1: x=blk(x) else: # return attention of the last block returnblk(x, return_attention=True) defget_intermediate_layers(self, x, n=1): x=self.prepare_tokens(x) # we return the output tokens from the `n` last blocks output= [] fori, blkinenumerate(self.blocks): x=blk(x) iflen(self.blocks) -i<=n: output.append(self.norm(x)) returnoutput classVitGenerator(object): def__init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False): self.name_model=name_model self.patch_size=patch_size self.evaluate=evaluate self.device=device self.verbose=verbose self.model=self._getModel() self._initializeModel() ifnotrandom: self._loadPretrainedWeights() def_getModel(self): ifself.verbose: print( f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}") ifself.name_model=='vit_tiny': model=VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) elifself.name_model=='vit_small': model=VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) elifself.name_model=='vit_base': model=VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) else: raisef"No model found with {self.name_model}" returnmodel def_initializeModel(self): ifself.evaluate: forpinself.model.parameters(): p.requires_grad=False self.model.eval() self.model.to(self.device) def_loadPretrainedWeights(self): ifself.verbose: print("[INFO] Loading weights") url=None ifself.name_model=='vit_small'andself.patch_size==16: url="dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" elifself.name_model=='vit_small'andself.patch_size==8: url="dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" elifself.name_model=='vit_base'andself.patch_size==16: url="dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" elifself.name_model=='vit_base'andself.patch_size==8: url="dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" ifurlisNone: print( f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used") else: state_dict=torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/"+url) self.model.load_state_dict(state_dict, strict=True) defget_last_selfattention(self, img): returnself.model.get_last_selfattention(img.to(self.device)) def__call__(self, x): returnself.model(x)创立可视化函数
...