大数据学习路线图-让你精准掌握大数据技术学习

大数据指不用随机分析法这样捷径,而采用所有数据进行分析处理的方法。互联网时代每个企业每天都要产生庞大的数据,对数据进行储存,对有效的数据进行挖掘分析并应用需要依赖于大数据开发,大数据开发课程采用真实商业数据源并融合云计算+机器学习,让学员有实力入职一线互联网企业。 今天小编的技术分享详细学习大数据的精准路线图,学好大数据就还得靠专业的工具。 阶段一、 Java语言基础 Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群251956502 这样大家学习的话就比较方便,还能够共同交流和分享资料 阶段二、 HTML、CSS与Java PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用 阶段三、 JavaWeb和数据库 数据库、JavaWeb开发核心、JavaWeb开发内幕 阶段四、 LinuxHadoopt体系 Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架 阶段五、 实战(一线公司真实项目) 数据获取、数据处理、数据分析、数据展现、数据应用 阶段六、 Spark生态体系 Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn) 阶段七、 Storm生态体系 storm技术架构体系、Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战 阶段八、 大数据分析 —AI(人工智能) Data Analyze工作环境准备数据分析基础、数据可视化、Python机器学习 1、Python机器学习2、图像识别神经网络、自然语言处理社交网络处理、实战项目:户外设备识别分析 大数据真的是一门神奇的学科,似乎学好大数据就能踏遍互联网的大部分领域。就像当下很火的区块链、人工智能等等都是跟大数据技术息息相关。每一个想学习大数据的小伙伴,都是未来不可多得的人才,快用技术征服世界吧。 一、Hadoop入门,了解什么是Hadoop 1、Hadoop产生背景 2、Hadoop在大数据、云计算中的位置和关系 3、国内外Hadoop应用案例介绍 4、国内Hadoop的就业情况分析及课程大纲介绍 5、分布式系统概述 6、Hadoop生态圈以及各组成部分的简介 7、Hadoop核心MapReduce例子说明 二、分布式文件系统HDFS,是数据库管理员的基础课程 1、分布式文件系统HDFS简介 2、HDFS的系统组成介绍 3、HDFS的组成部分详解 4、副本存放策略及路由规则 5、NameNode Federation 6、命令行接口 7、Java接口 8、客户端与HDFS的数据流讲解 9、HDFS的可用性(HA) 三、初级MapReduce,成为Hadoop开发人员的基础课程 1、如何理解map、reduce计算模型 2、剖析伪分布式下MapReduce作业的执行过程 3、Yarn模型 4、序列化 5、MapReduce的类型与格式 6、MapReduce开发环境搭建 7、MapReduce应用开发 8、更多示例讲解,熟悉MapReduce算法原理 四、高级MapReduce,高级Hadoop开发人员的关键课程 1、使用压缩分隔减少输入规模 2、利用Combiner减少中间数据 3、编写Partitioner优化负载均衡 ...

July 8, 2019 · 1 min · jiezi

大数据开发需要学习什么大数据平台是什么

大数据开发专业需要学习的内容包括三大部分,分别是大数据基础知识、大数据平台知识、大数据场景知识。大数据基础知识: 有三个主要部分,分别是数学、统计学和计算机等学科。大数据基础知识往往决定了开发人员未来的成长高度,所以要重视基础知识的学习。 大数据平台知识: 是大数据开发的基础,在学习期间,往往以搭建Hadoop、Spark平台为主,一方面Hadoop对机器的硬件要求不高,另一方面Hadoop的使用也非常普遍,很多商业大数据平台都是基于Hadoop构建的。大数据的核心是数据价值化。 大数据场景知识: 是目前大数据的重要应用,这些场景包括很多领域,比如金融大数据、交通大数据、教育大数据、餐饮大数据等等,这些场景应用的背后也需要对行业知识有一定的了解。 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群251956502 这样大家学习的话就比较方便,还能够共同交流和分享资料 大数据开发学习 大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。 大数据需要学习: 语言Java、Scala等 分布式计算Spark,MapReduce等 分布式存储Hbase,MongoDB等 分布式调度与管理Yarn、Zookeeper等 大数据平台是指以处理海量数据存储、计算及不间断流数据实时计算等场景为主的一套基础设施,典型的包括Hadoop系列、Spark、Storm、Flink以及Flume/Kafka等集群,加米谷大数据提供相应的大数据技术支持服务。既可以采用开源平台,也可以采用华为、星环等商业级解决方案,既可以部署在私有云上,也可以部署在公有云上。 大数据的业务应用主要包括以下几个层面: 1、客户管理 充分挖掘分析客户的各维度基本信息以及当前/历史的行为记录,刻画用户画像,实现给客户分群。 2、精准营销 在建立用户画像的基础上,可向特定客户推荐营销针对性的产品或优惠,提升获客能力,巩固客户关系。 3、风险识别 构建异常检测和风险识别等模型,可以有效识别客户管理、产品开发及销售过程中出现的异常和风险,从而做出针对性的处置,防患于未然。 4、运行优化 大数据可以帮助优化渠道、机构,提前缓释负面舆情,保护公司品牌形象。

July 7, 2019 · 1 min · jiezi

为何零基础也可学习大数据技术

随着大数据在国内的发展,大数据相关人才出现了供不应求的状况,大数据分析师更是被媒体称为“未来发展前景良好的职业之一”。大数据分析师的薪酬比同等级职位高20%。而如何成为大数据时代的弄潮儿,掌握当下紧缺的软件技能是关键,那么,零基础该怎样学习大数据呢? 大数据作为当下呼声特别高的IT技术,想学大数据的朋友已经从一个变成两个,从两个变成三个,但是计数单位,也是从个到百到千到万,接下来还可能更高。大数据的学习容易吗?门槛低,想学的都可以展开大数据的学习,那么该怎么入门呢? 1 何谓大数据 其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。 大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的。再比如精准营销、百度的推广、淘宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等。 在这里还是要推荐下我自己建的大数据学习交流群:251956502,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。 2 零基础学大数据好不好学 随着大数据行业的快速发展,也随之出现了一些问题,比如大数据人才的缺失就是目前急需解决的一个问题,那么很多学大数据的人又出现了一些问题,就是大家普遍担心的就是零基础能不能学习大数据,会不会不好学? 零基础的人要不要去大数培训机构学习大数据开发吗?答案是可以的去。大数据学习并不是高深莫测的,虽然对于零基础学员来说不是那么简单,但是只要你认真学习,加上有专业老师的指导和针对性的训练,相信你也是可以完全掌握大数据的。 3 零基础学大数据四步走 零基础的同学学习大数据开发不能急于求成,要分阶段分步骤来一步步完成,大概可以分为四步: 第一个阶段:了解大数据的基本概念 首先,学习一门课程的时候,要对这门课程有一个简单的了解,比如说,要先学习这门课程的一些专业的术语,学习一些入门概念知道这么课程是做什么的,主要的学习知识有哪些。那么学习大数据就必须知道什么是大数据,一般大数据的运用领域是那些,避免自己在对大数据一无所知的情况下就开始盲目学习。 第二个阶段:学习计算机的编程语言 对于零基础的小伙伴们来说,开始入门可能并不是那么容易,需要学习大量的理论知识,阅读枯燥的教材。因为要掌握一门计算机编程语言,还是很难的。大家都知道计算机编程语言有很多,比如:R,C++,Python,Java等等。 第三阶段:大数据有关的学习课程 经过了前两阶段的基础学习后,我们对编程语言也基本掌握了,接下来就可以进行大数据部分的课程学习了。在这里小编要特别提醒大家:行业真正大数据,82%主讲都是hadoop、spark生态体系、storm实时开发,初学者请务必认清你要学的是不是真正大数据! 第四个阶段:项目实战阶段 实战训练可以帮助我们更好的理解所学的内容,同时对相关知识加强记忆。在以后的实际运用中,可以更快的上手,对于相关知识的使用方法也有了经验。 世上无难事只怕有心人,无论你是有基础也好还是没基础也好,只要你认真学习大数据就一定会学好。 最后:后续提高 大数据结合人工智可以达到真正的数据科学家。 机器学习:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习的算法基本比较固定了,学习起来相对容易。 深度学习:深度学习的概念源于人工神经网络的研究,最近几年发展迅猛。深度学习应用的实例有AlphaGo、人脸识别、图像检测等。是国内外稀缺人才,但是深度学习相对比较难,算法更新也比较快,需要跟随有经验的老师学习。 最快的学习方法,就是师从行业专家,毕竟老师有多年积累的经验,自己少走弯路达到事半功倍的效果。

July 4, 2019 · 1 min · jiezi

初识大数据

什么是大数据?大数据有什么特点?大数据与传统的数据有什么关系?大数据和我们有什么关系?虽然很多书籍上直接说明了大数据的概念和特点,但是根据个人的体会,如果我们先了解数据的概念和特点,那么我们将会更加容易理解大数据。 关于数据的几个问题 什么是数据?狭义上讲数据就是数值,也就是我们通过观察、实验或计算得出的结果;从广义上讲,数据的含义更加广阔,也可以是文字、图像、声音等。当前我们所说的数据一般是指广义上的数据。 数据有什么特点?数据的种类繁多(语言、文字、数值、图像影音等),数据质量也参差不齐真假难辨,数据存储介质各异(口头相传、纸张书籍、数码磁盘),简单的总结数据的特点就是一下几个字:多、杂、乱。 数据有什么作用?数据的本身最主要作用是用于记录事物及其发展,人们可以根据这些记录的数据对事物进行相应的分析,得到相关的规律和结果(如根据实验数据得到相应的计算公式),并根据得到的规律和结果对现有或者未来的事物做出相应的决策行动。 在这里还是要推荐下我自己建的大数据学习交流群:251956502,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。 大数据的由来 大数据概念的的兴起也就是最近不到10年的时间,我们在了解了数据的几个基本概念之后,我们再来看一下大数据出现的背景。 关于数据的起源,早在远古时代人们就已经在石头、树木上记载相应的数据了,再到后来人们用竹简、棉帛等记载和传输数据,在这一阶段数据的记录和传播都是非常有限的;到后来纸张的出现和印刷术的发明,数据的记录和传播有了第一次长足的进步,但是此时的数据量仍旧是相当的小,传播速度也是较为缓慢,传播范围相对狭窄,人们对数据的分析和使用十分有限;直到了计算机和磁盘等存储介质的出现,人们记录数据和计算分析数据的能力有了质的飞跃,随着互联网的出现和通信技术的不断提高,数据的产生和传播速度以及传播范围急速提升,数据呈现爆发式的增长,人们几乎可以实时的了解世界上发生的所有重大事件,至此人们进入所谓的大数据时代。 大数据的基本概念 大数据和传统数据相比有什么异同呢?仅仅是数据量的增加吗?我们应对大数据的方法和应对传统数据的方法一样吗?大数据与我们的生活有什么直接的关系吗? 大数据和传统数据有什么异同呢?现在较为认可的大数据的特点是关于大数据“4V”的说法,也就是大数据与传统数据的异同点,即数据量大、数据类型繁多、数据处理速度快、数据的价值密度较低。 数据量(Volume) 数据类型(Variety) 处理方式(Velocity) 数据价值(Value) 传统数据 数据量较小,增长速度较慢 数据类型单一,以数字与文字为主 人工计算推导,单机处理,时效性不高 价值密度较高,存储的基本都是有用信息 大数据 数据量较大,数据量层指数型增加 数据类型丰富,影音数据的比例较大 分布式处理,时效性较高 价值密度较低,需要从大量数据中挖掘价值 那我们应该用什么方法去应对这些数据呢?根据大数据和传统数据的特点,我们在处理这些海量数据的时候思维上应该有一些改变,在《大数据时代:生活工作与思维的大变革》一书中指出,我们在应对大数据的时候应该有一下3中思维的改变:全量而非抽样,效率而非精确,相关而非因果。 全量而非抽样,在以前数据存储和计算能力的限制下,在数据分析中通常采用抽样的方法,通过对部分数据进行分析得到相应的结论进而推广到整个数据集中。在大数据时代中,数据的存储和计算不在是瓶颈,运用整个数据集进行全域的数据分析快速地得到相应的结果已经成为可能。 效率而非精确,在过去的抽样分析中,必须确保样本分析的精确性才能在全域数据中进行推广,以免数据分析结果的误差会在全域数据中扩大,这样导致数据的分析验证较为繁琐且效率低下。在大数据时代中,直接对全域数据进行分析,分析结果的误差直接基于所有的数据,在可接受误差范围内直接使用分析结果即可,不用担心分析误差的扩散。 相关而非因果,在过去的数据分析中,分析的目的往往是了解事物发生背后的原理,但是在大数据时代数据的因果关系不在那么重要,人们关注的往往是事情将如何发展而不是数据为什么这样发展,这样事物之间的相关性就显得更加的重要。

June 30, 2019 · 1 min · jiezi

大数据开发过程中的5个学习通用步骤

大数据的开发过程,如图1-1所示。 图 1-1大数据开发通用步骤图 上图只是一个简化后的步骤和流程,实际开发中,有的步骤可能不需要,有的还需要增加步骤,有的流程可能更复杂,因具体情况而定。 下面以Google搜索引擎为例,来说明以上步骤。 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群529867072 这样大家学习的话就比较方便,还能够共同交流和分享资料 大数据采集Google的数据来源于互联网上的网页,它们由Google Spider(蜘蛛、爬虫、机器人)来抓取,抓取的原理也很简单,就是模拟我们人的行为,来访问各个网页,然后保存网页内容。 Google Spider是一个程序,运行在全球各地的Google服务器之中,Spider们非常勤奋,日夜不停地工作。点击领取免费资料及课 2008年Google数据表明,它们每天都会访问大约200亿个网页,而在总量上,它们追踪着300亿个左右的独立URL链接。 可以说,只要是互联网上的网站,只要没有在robots.txt文件禁止Spider访问的话,其网页基本上都会在很短的时间内,被抓取到Google的服务器上。 全球的网页,这是典型的大数据。因此,Google Spider所做的就是典型的大数据采集工作。 大数据预处理Google Spider爬取的网页,无论是从格式还是结构等,都不统一,为了便于后续处理,需要先做一些处理,例如,在存储之前,先转码,使用统一的格式对网页进行编码,这些工作就是预处理。 大数据存储网页经过预处理后,就可以存储到Google的服务器上。 2008年,Google已经索引了全世界1万亿个网页,到2014年,这个数字变成了30万亿个。 为了减少开销,节约空间,Google将多个网页文件合并成一个大文件,文件大小通常在1GB以上。 这还是15年以前的数字,那时,主流台式机硬盘也就是60GB左右,1GB的文件在当时可以说是大文件了。 为了实现这些大文件高效、可靠、低成本存储,Google发明了一种构建在普通商业机器之上的分布式文件系统:Google File System,缩写为GFS,用来存储文件(又称之为非结构化数据)。 网页文件存储下来后,就可以对这些网页进行处理了,例如统计每个网页出现的单词以及次数,统计每个网页的外链等等。 这些被统计的信息,就成为了数据库表中的一个属性,每个网页最终就会成为数据库表中的一条或若干条记录。 由于Google存储的网页太多,30万亿个以上,因此,这个数据库表也是超级庞大的,传统的数据库,像Oracle等,根本无法处理这么大的数据,因此Google基于GFS,发明了一种存储海量结构化数据(数据库表)的分布式系统Bigtable。 上述两个系统(GFS和Bigtable)并未开源,Google仅通过文章的形式,描述了它们的设计思想。 所幸的是,基于Google的这些设计思想,时至今日,已经出现了不少开源海量数据分布式文件系统,如HDFS等,也出现了许多开源海量结构化数据的分布式存储系统,如HBase、Cassandra等,它们分别用于不同类型大数据的存储。 总之,如果采集过来的大数据需要存储,要先判断数据类型,再确定存储方案选型; 如果不需要存储(如有的流数据不需要存储,直接处理),则直接跳过此步骤,进行处理。 在这里还是要推荐下我自己建的大数据学习交流群:529867072,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。4. 大数据处理 网页存储后,就可以对存储的数据进行处理了,对于搜索引擎来说,主要有3步: 1)单词统计:统计网页中每个单词出现的次数; 2)倒排索引:统计每个单词所在的网页URL(Uniform Resource Locator统一资源定位符,俗称网页网址)以及次数; 3)计算网页级别:根据特定的排序算法,如PageRank,来计算每个网页的级别,越重要的网页,级别越高,以此决定网页在搜索返回结果中的排序位置。 例如,当用户在搜索框输入关键词“足球”后,搜索引擎会查找倒排索引表,得到“足球”这个关键词在哪些网页(URL)中出现,然后,根据这些网页的级别进行排序,将级别最高的网页排在最前面,返回给用户,这就是点击“搜索”后,看到的最终结果。 大数据处理时,往往需要从存储系统读取数据,处理完毕后,其结果也往往需要输出到存储。因此,大数据处理阶段和存储系统的交互非常频繁。 大数据可视化大数据可视化是将数据以图形的方式展现出来,与纯粹的数字表示相比,图形方式更为直观,更容易发现数据之间的规律。 例如,Google Analytics是一个网站流量分析工具,它统计每个用户使用搜索引擎访问网站的数据,然后得到每个网站的流量信息,包括网站每天的访问次数,访问量最多的页面、用户的平均停留时间、回访率等,所有数据都以图形的方式,直观地显示出来,如图1-2所示 图1-2 Google网站访问量分析图

May 5, 2019 · 1 min · jiezi

如何进入现在较火热的大数据领域学习路线是什么

大数据不是某个专业或一门编程语言,实际上它是一系列技术的组合运用。有人通过下方的等式给出了大数据的定义。大数据 = 编程技巧 + 数据结构和算法 + 分析能力 + 数据库技能 + 数学 + 机器学习 + NLP + OS + 密码学 + 并行编程虽然这个等式看起来很长,需要学习的东西很多,但付出和汇报是成正比的,至少和薪资是成正比的。既然要学的知识很多,那么一个正确的学习顺序就非常关键了。 「大数据」制定了一条专业的学习路径,希望帮助大家少走弯路。主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。其中,阶段一到阶段五均为免费课程,具体说来:阶段一:学习入门知识这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。 QQ_20181215190246 学习大数据首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。 Java大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下。有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。 Linux因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。 Hadoop这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。 YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。 其实把Hadoop的这些组件学明白你就能做大数据的处理了,只不过你现在还可能对"大数据"到底有多大还没有个太清楚的概念,听我的别纠结这个。等以后你工作了就会有很多场景遇到几十T/几百T大规模的数据,到时候你就不会觉得数据大真好,越大越有你头疼的。当然别怕处理这么大规模的数据,因为这是你的价值所在,让那些个搞Javaee的php的html5的和DBA的羡慕去吧。 图片描述 记住学到这里可以作为你学大数据的一个节点。 Zookeeper这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。 Mysql我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。 Sqoop这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。Hive这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。.在入门学习大数据的过程当中有遇见学习,行业,缺乏系统学习路线,系统学习规划,欢迎你加入我的大数据学习交流裙:529867072 ,裙文件有我这几年整理的大数据学习手册,开发工具,PDF文档书籍,你可以自行下载。图片描述 Oozie既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。Hbase这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。 Kafka这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了。因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。 ...

May 4, 2019 · 1 min · jiezi

大数据方面核心技术有哪些新人必读

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。 在这里还是要推荐下我自己建的大数据学习交流群:529867072,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。 一、数据采集与预处理 对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。 Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。 NDC,Netease Data Canal,直译为网易数据运河系统,是网易针对结构化数据库的数据实时迁移、同步和订阅的平台化解决方案。它整合了网易过去在数据传输领域的各种工具和经验,将单机数据库、分布式数据库、OLAP系统以及下游应用通过数据链路串在一起。除了保障高效的数据传输外,NDC的设计遵循了单元化和平台化的设计哲学。 Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。 Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。 流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。 Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。 当使用上游模块的数据进行计算、统计、分析时,就可以使用消息系统,尤其是分布式消息系统。Kafka使用Scala进行编写,是一种分布式的、基于发布/订阅的消息系统。Kafka的设计理念之一就是同时提供离线处理和实时处理,以及将数据实时备份到另一个数据中心,Kafka可以有许多的生产者和消费者分享多个主题,将消息以topic为单位进行归纳;Kafka发布消息的程序称为producer,也叫生产者,预订topics并消费消息的程序称为consumer,也叫消费者;当Kafka以集群的方式运行时,可以由一个服务或者多个服务组成,每个服务叫做一个broker,运行过程中producer通过网络将消息发送到Kafka集群,集群向消费者提供消息。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。Kafka可以和Flume一起工作,如果需要将流式数据从Kafka转移到hadoop,可以使用Flume代理agent,将Kafka当做一个来源source,这样可以从Kafka读取数据到Hadoop。 Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。 二、数据存储 Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。 HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。 Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。 Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。 Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。 Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。 Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。 Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。 在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。 三、数据清洗 MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。 随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。 Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。 Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。 流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求。 四、数据查询分析 Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。 ...

May 1, 2019 · 1 min · jiezi

Python-数据分析与挖掘的学习路径

0.前言 很多人反映在学习了Python基础之后无所适从,不知道下一步往哪走。作为较早期的跨界者(土木狗)深有体会。本文将结合上图,为后来者指明方向,可作为参考。在此强调:如果打算依靠Python逃离现有的工作(如土木施工),那就要认真想想自己打算做哪一方面的工作,互联网营销、前端、运维、爬虫、数据分析、数据挖掘、Web开发?强烈建议:直接上拉钩或者Boss直聘,针对性学习更为稳妥。如果打算业余玩玩,那跟着我们一起业余吧,嚯嚯~ .在入门学习大数据的过程当中有遇见学习,行业,缺乏系统学习路线,系统学习规划,欢迎你加入我的大数据学习交流裙:529867072 ,裙文件有我这几年整理的大数据学习手册,开发工具,PDF文档书籍,你可以自行下载。1.目标确定 凡事预则立,不预则废。事先明确自己要处理事情,大体上有个方向。比如你准备分析当地房价,或是电商某种类数据,或是某个垂直领域的数据等。 2.数据获取 爬虫是Python初学者的必经之路,通过爬虫既可以获取数据,还可以理解Web的工作原理。前者可以作为数据分析的原料,后者可以作为数据Web可视化的基础。至于你使用Request,还是Scrapy,或是Selenium,可以随意一点,这不是公众号【调包】的重点,度娘或GitHub有很多范例供大家参考。 3.数据分析 《利用Python进行数据分析》该书详细讲述了Pandas的使用,用它可以实现上图流程之后的底层流程(数据整理、描述分析、洞察结论、报告撰写),这个路径可以称之“数据分析”。 4.数据挖掘 上图数据整理之后的上层路径(建模分析、模型测试、迭代优化、模型加载、报告撰写),这个路径可以称之“数据挖掘”。将会用到Sklearn、XGboost、Pytorch、TensorFlow、Spark、Hadoop等库或工具。 5.报告撰写不管是数据分析还是数据挖掘,最终都要反映到报告中,可以在线动态展示数据、也可以是离线静态报表,或者插入PPT。这个阶段Matplotlib是基础,至于用其他可视化库或是非Python系的工具,可以随意点,重点在于你分析的结论能否让阅读者肯定。 6.需求反馈 从报告撰写再回到目标确定,这是一个产品迭代的闭环。类似于土木施工组织管理的PDCA。

April 30, 2019 · 1 min · jiezi