无分类 卷积神经网络导览 这篇文章旨在以全面和简洁的方式介绍卷积神经网络(CNN),目标是建立对这些算法的内部工作的直观理解。因此,这项工作对于刚从这个主题开始的非数学、非计算机科学背景的读者来说意味着特别有价值。
无分类 用简单代码看卷积组块发展 作为一名计算机科学家,我经常在翻阅科学技术资料或者公式的数学符号时碰壁。我发现通过简单的代码来理解要容易得多。因此,在本文中,我想带领大家看一看最近在Keras中实现的体系结构中一系列重要的卷积组块。
无分类 深度学习Trick——用权重约束减轻深层网络过拟合|附(Keras)实现代码 在深度学习中,批量归一化(batch normalization)以及对损失函数加一些正则项这两类方法,一般可以提升模型的性能。这两类方法基本上都属于权重约束,用于减少深度学习神经网络模型对训练数据的过拟合,并改善模…
无分类 一文了解自然语言处理神经史(下) 2014年,Sutskever等人提出序列到序列学习,一种通过神经网络将一个序列映射到另一个序列的通用框架。在该框架中,编码器神经网络逐个符号地处理句子并将其压缩成矢量表示; 然后,解码器神经网络基于编码器状态逐…
无分类 一文了解自然语言处理神经史(上) 本文扩展了Herman Kamper和我在2018年深度学习Indaba组织的自然语言处理前沿课程。整个课程的幻灯片都可以在这里找到,这篇文章将主要讨论NLP中基于神经网络方法的近期进展。
无分类 用深度学习预测专业棋手走法 我父亲在我年幼的时候教过我,但我猜他是那些一直让他们的孩子获胜的爸爸之一。为了弥补世界上最受欢迎的游戏之一的技能的缺乏,我做了任何数据科学爱好者会做的事情:建立一个人工智能来击败我无法击败的人。遗憾…
无分类 由浅入深:CNN中卷积层与转置卷积层的关系 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢…