无分类 迁移学习NLP:BERT、ELMo等直观图解 2018年是自然语言处理的转折点,能捕捉潜在意义和关系的方式表达单词和句子的概念性理解正在迅速发展。此外,NLP社区已经出现了非常强大的组件,你可以在自己的模型和管道中自由下载和使用(它被称为NLP的ImageNe…
无分类 一文了解自然语言处理神经史(下) 2014年,Sutskever等人提出序列到序列学习,一种通过神经网络将一个序列映射到另一个序列的通用框架。在该框架中,编码器神经网络逐个符号地处理句子并将其压缩成矢量表示; 然后,解码器神经网络基于编码器状态逐…