Spring-Cloud-Alibaba系列五sentinel实现服务限流降级

42次阅读

共计 4522 个字符,预计需要花费 12 分钟才能阅读完成。

一、sentinel 是什么

sentinel 的官方名称叫分布式系统的流量防卫兵。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。在 Spring Cloud 项目中最开始我们使用的是 Hystrix,目前已停止更新了。现在 Spring Cloud 官方推荐的是 rensilience4j。当然还有我们今天学习的 sentinel。

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运 行情况。
  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架 / 库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

二、sentinel 实现限流

2.1 安装 sentinel 控制台

  • 下载地址:https://github.com/alibaba/Se…

这里我们直接下载 jar 包即可,下载后通过命令行启动:

java -jar sentinel-dashboard-1.7.2.jar
  • 默认端口:8080
  • 默认用户名:sentinel
  • 默认密码:sentinel

启动成功后,我们浏览器访问 http://localhost:8080,出现如下界面。

2.2 微服务继承 sentinel

  • 引入 sentinel 依赖
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
  • 添加 sentinel 的相关配置
server:
  port: 7003
spring:
  application:
    name: sentinel-provider
  cloud:
    nacos:
      discovery:
        server-addr: 127.0.0.1:8848
    sentinel:
      transport:
        dashboard: 127.0.0.1:8080
  • 提供个接口用来测试限流
@SpringBootApplication
public class SentinelApplication {public static void main(String[] args) {SpringApplication.run(SentinelApplication.class, args);
    }
}

@RestController
class TestController{@GetMapping("/test")
    public String test(){return "hello! sentinel!";}
}

我们请求几次这个接口后,打开 sentinel 控制台,就可以实时监控到这个 sentinel-provider 服务接口调用情况了。

2.3 配置限流规则

我们这里做一个简单的规则配置:

  • 阀值类型:QPS
  • 单机阀值:2

意思就是:该接口每秒最多允许进入两个请求。

点击新增后,在流控规则里发现了一条规则:

现在,我们继续请求 3 次这个接口。第三次响应的内容如下:

Blocked by Sentinel (flow limiting)

我们打开控制台发现拒绝了一条请求。

三、Sentinel 规则介绍

不管是限流还是降级,它都是按照某种规则进行的,下面具体介绍一下 sentinel 支持的几种规则。

3.1 流控规则

流量控制,其原理是监控应用流量的 QPS(每秒查询率) 或并发线程数等指标,当达到指定的阈值时

对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。

资源名:唯一名称,默认是请求路径,可自定义

针对来源:指定对哪个微服务进行限流,默认指 default,意思是不区分来源,全部限制

阈值类型 / 单机阈值

  • QPS(每秒请求数量): 当调用该接口的 QPS 达到阈值的时候,进行限流
  • 线程数:当调用该接口的线程数达到阈值的时候,进行限流

3.2 降级规则

降级规则就是当满足什么条件时,对服务降级——即将请求转发到另外接口上,这个接口与业务无关,只是为了保证系统的完整性。

  • RT(平均响应时间):当资源的平均响应时间超过阈值(以 ms 为单位)之后,资源进入准降级状态。如果接下来 1s 内持续进入 5 个请求,它们的 RT 都持续超过这个阈值,那么在接下的时间窗口(以 s 为单位)之内,就会对这个方法进行服务降级。

    注意 Sentinel 默认统计的 RT 上限是 4900 ms,超出此阈值的都会算作 4900 ms,若需要变更此上限可以通过启动配置项 -Dcsp.sentinel.statistic.max.rt=xxx 来配置。

  • 异常比例:当资源的每秒异常总数占通过量的比值超过阈值之后,资源进入降级状态,即在接下的时间窗口(以 s 为单位)之内,对这个方法的调用都会自动地返回。异常比率的阈值范围是 [0.0,1.0]。
  • 异常数:当资源近 1 分钟的异常数目超过阈值之后会进行服务降级。注意由于统计时间窗口是分钟级别的,若时间窗口小于 60s,则结束熔断状态后仍可能再进入熔断状态。

3.3 热点规则

热点规则允许将规则具体到参数上。

我们用个例子来看看效果。

  • 编写接口
@GetMapping("/myTest")
@SentinelResource("test3")
public String test123(String name,String age){return  name + "----"+ age;}
  • 添加规则

  • 运行效果

结果显示,第一个参数被限流了,而第二个参数正常。

3.4 系统规则

系统保护规则是从应用级别的入口流量进行控制,从单台机器的总体 Load、RT、入口 QPS、CPU 使用率和线程数五个维度监控应用数据,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。

系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量 (进入应用的流量) 生效。

  • Load(仅对 Linux/Unix-like 机器生效):当系统 load1 超过阈值,且系统当前的并发线程数超过系统容量时才会触发系统保护。系统容量由系统的 maxQps minRt 计算得出。设定参考值一般是 CPU cores 2.5。
  • RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。
  • CPU 使用率:当单台机器上所有入口流量的 CPU 使用率达到阈值即触发系统保护。

3.5 授权规则

很多时候,我们需要根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源问控制的功能。来源访问控制根据资源的请求来源(origin)限制资源是否通过:

  • 若配置白名单,则只有请求来源位于白名单内时才可通过;
  • 若配置黑名单,则请求来源位于黑名单时不通过,其余的请求通过。

流控应用:sentinel 提供了 RequestOriginParser 来处理接口来源。

我们运行 abc 来源的请求访问 /test 接口。

@Component
class requestOrigin implements RequestOriginParser{

    @Override
    public String parseOrigin(HttpServletRequest httpServletRequest) {String server = httpServletRequest.getParameter("server");
        return server;
    }
}

我们请求 http://localhost:7003/test?server=abc 和 http://localhost:7003/test?server=ab 来分别看看效果。

@SentinelResource 的使用

@SentinelResource 用于定义资源,并提供可选的异常处理和 fallback 配置项。

主要参数有以下几个

属性 作用
value 资源名称
entryType entry 类型,标记流量的方向,取值 IN/OUT,默认是 OUT
blockHandler 处理 BlockException 的函数名称, 函数要求:1. 必须是 public;2. 返回类型 参数与原方法一致;3. 默认需和原方法在同一个类中。若希望使用其他类的函数,可配置 blockHandlerClass,并指定 blockHandlerClass 里面的方法。
blockHandlerClass 存放 blockHandler 的类, 对应的处理函数必须 static 修饰。
fallback 1. 返回类型与原方法一致;2. 参数类型需要和原方法相匹配;3. 默认需和原方法在同一个类中。若希望使用其他类的函数,可配置 fallbackClass
fallbackClass 存放 fallback 的类。对应的处理函数必须 static 修饰。
defaultFallback 若同时配置了 fallback 和 defaultFallback,以 fallback 为准。
exceptionsToIgnore 指定排除掉哪些异常。排除的异常不会计入异常统计,也不会进入 fallback 逻辑,而是原样抛出。
exceptionsToTrace 需要 trace 的异常

@sentinelResource 可结合 blockHandler 用于限流处理,结合 fallback 用于降级处理。具体规则可通过 sentinel 控制台配置,具体我就不演示了,在下一章内容中,我会分别演示限流和降级的应用。

public class MySentinelResource {@SentinelResource(value="message",blockHandler="blockHandler",fallback="fallback")
    public String message(String str){if(StringUtils.isBlank(str)){throw new RuntimeException();
        }
        return str;
    }
    /**
     * 限流处理
     * @param str
     * @param ex
     * @return
     */
    public String blockHandler(String str, BlockedException ex){return str + "--"+ ex;}
    /**
     * 降级处理
     * @param str
     * @return
     */
    public String fallback(String str){return null;}
}

代码示例

gitee:https://gitee.com/zhixie/spri…

github:https://github.com/binzh303/s…

正文完
 0