收藏-10个可以快速用Python进行数据分析的小技巧

39次阅读

共计 3959 个字符,预计需要花费 10 分钟才能阅读完成。

编译:小七、蒋宝尚

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas 中数据框数据的 Profiling 过程

Profiling(分析器)是一个帮助我们理解数据的过程,而 Pandas Profiling 是一个 Python 包,它可以简单快速地对 Pandas 的数据框数据进行探索性数据分析。

Pandas 中 df.describe 和 http://df.info 函数可以实现 EDA 过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。而 Pandas 中的 Profiling 功能简单通过一行代码就能显示大量信息,且在交互式 HTML 报告中也是如此。

对于给定的数据集,Pandas 中的 profiling 包计算了以下统计信息:

由 Pandas Profiling 包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用 pip 安装或者用 conda 安装

pipinstall pandas-profilingcondainstall -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能 Python 分析器的结果。

#importing the necessary packagesimport pandas as pdimport pandas_profilingdf = pd.read_csv('titanic/train.csv')pandas_profiling.ProfileReport(df)

一行代码就能实现在 Jupyter Notebook 中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式 HTML 文件中。

profile = pandas_profiling.ProfileReport(df)profile.to_file(outputfile="Titanic data profiling.html")

Pandas 实现交互式作图

Pandas 有一个内置的.plot 函数作为 DataFrame 类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用 pandas.DataFrame.plot 函数绘制图表也不能实现交互。如果我们需要在不对代码进行重大修改的情况下用 Pandas 绘制交互式图表怎么办呢?这个时候就可以用 Cufflinks 库来实现。

Cufflinks 库可以将有强大功能的 plotly 和拥有灵活性的 pandas 结合在一起,非常便于绘图。下面就来看在 pandas 中如何安装和使用 Cufflinks 库。

安装

pip install plotly# Plotly is a pre-requisite before installing cufflinkspip install cufflinks#importing Pandas#importing plotly and cufflinks in offline modeimport cufflinks as cfimport plotly.offlinecf.go_offlinecf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot

df.iplot vsdf.plot

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic 命令

Magic 命令是 Jupyter notebook 中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic 可以看到所有的可用命令。

所有可用的 Magic 命令列表

Magic 命令有两种:行 magic 命令(line magics),以单个%字符为前缀,在单行输入操作;单元 magic 命令(cell magics),以双 %% 字符为前缀,可以在多行输入操作。如果设置为 1,则不用键入 % 即可调用 Magic 函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin 将代码上传到 Pastebin 并返回 url。Pastebin 是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过 url 可以与其他人共享。事实上,Github gist 也类似于 pastebin,只是有版本控制。

在 file.py 文件中写一个包含以下内容的 python 脚本,并试着运行看看结果。

#file.pydeffoo(x):return x

在 Jupyter Notebook 中使用%pastebin 生成一个 pastebin url。

%matplotlib notebook

函数用于在 Jupyter notebook 中呈现静态 matplotlib 图。用 notebook 替换 inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入 matplotlib 库之前调用。

%run

用%run 函数在 notebook 中运行一个 python 脚本试试。

%run file.py%%writefile

%% writefile 是将单元格内容写入文件中。以下代码将脚本写入名为 foo.py 的文件并保存在当前目录中。

%%latex

%%latex 函数将单元格内容以 LaTeX 形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug 并运行它。这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击 q 即可。

Printing 也有小技巧

如果您想生成美观的数据结构,pprint 是首选。它在打印字典数据或 JSON 数据时特别有用。接下来看一个使用 print 和 pprint 来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的 Jupyter notebook 中使用警示框 / 注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

<div class="alert alert-block alert-info"><b>Tip:</b> Use blue boxes (alert-info) for tips and notes.If it’s a note, you don’t have to include the word“Note”.</div>

黄色警示框:警告

<div class="alert alert-block alert-warning"><b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.</div>

绿色警示框:成功

<div class="alert alert-block alert-success">Use green box only when necessary like to display links to related content.</div>

红色警示框:高危

<div class="alert alert-block alert-danger">It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.</div>

打印单元格所有代码的输出结果

假如有一个 Jupyter Notebook 的单元格,其中包含以下代码行:

In[1]: 10+511+6Out[1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加 print 函数。然而通过在 notebook 顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In[1]: 10+511+612+7Out[1]: 15Out[1]: 17Out[1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用 ’i’ 选项运行 python 脚本

从命令行运行 python 脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加 -i,例如 python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python 也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用 python 调试器,因为我们仍然在解释器中:

import pdbpdb.pm

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + / 自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过 Jupyter notebook 中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按 CTRL / CMD + Z 轻松恢复它。

如果需要恢复整个已删除的单元格,请按 ESC + Z 或 EDIT> 撤消删除单元格。

结论

在本文中,我列出了使用 Python 和 Jupyter notebook 时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

正文完
 0