原文地址
在前一篇文章中提到了如何使用 Prometheus+Grafana 来监控 JVM。本文介绍如何使用 Prometheus+Alertmanager 来对 JVM 的某些情况作出告警。
本文所提到的脚本可以在这里下载。
摘要
用到的工具:
Docker,本文大量使用了 Docker 来启动各个应用。
Prometheus,负责抓取 / 存储指标信息,并提供查询功能,本文重点使用它的告警功能。
Grafana,负责数据可视化(本文重点不在于此,只是为了让读者能够直观地看到异常指标)。
Alertmanager,负责将告警通知给相关人员。
JMX exporter,提供 JMX 中和 JVM 相关的 metrics。
Tomcat,用来模拟一个 Java 应用。
先讲一下大致步骤:
利用 JMX exporter,在 Java 进程内启动一个小型的 Http server
配置 Prometheus 抓取那个 Http server 提供的 metrics。
配置 Prometheus 的告警触发规则
heap 使用超过最大上限的 50%、80%、90%
instance down 机时间超过 30 秒、1 分钟、5 分钟
old gc 时间在最近 5 分钟里超过 50%、80%
配置 Grafana 连接 Prometheus,配置 Dashboard。
配置 Alertmanager 的告警通知规则
告警的大致过程如下:
Prometheus 根据告警触发规则查看是否触发告警,如果是,就将告警信息发送给 Alertmanager。
Alertmanager 收到告警信息后,决定是否发送通知,如果是,则决定发送给谁。
第一步:启动几个 Java 应用
1) 新建一个目录,名字叫做 prom-jvm-demo。
2) 下载 JMX exporter 到这个目录。
3) 新建一个文件 simple-config.yml 内容如下:
—
blacklistObjectNames: [“*:*”]
4) 运行以下命令启动 3 个 Tomcat,记得把 <path-to-prom-jvm-demo> 替换成正确的路径(这里故意把 -Xmx 和 -Xms 设置的很小,以触发告警条件):
docker run -d \
–name tomcat-1 \
-v <path-to-prom-jvm-demo>:/jmx-exporter \
-e CATALINA_OPTS=”-Xms32m -Xmx32m -javaagent:/jmx-exporter/jmx_prometheus_javaagent-0.3.1.jar=6060:/jmx-exporter/simple-config.yml” \
-p 6060:6060 \
-p 8080:8080 \
tomcat:8.5-alpine
docker run -d \
–name tomcat-2 \
-v <path-to-prom-jvm-demo>:/jmx-exporter \
-e CATALINA_OPTS=”-Xms32m -Xmx32m -javaagent:/jmx-exporter/jmx_prometheus_javaagent-0.3.1.jar=6060:/jmx-exporter/simple-config.yml” \
-p 6061:6060 \
-p 8081:8080 \
tomcat:8.5-alpine
docker run -d \
–name tomcat-3 \
-v <path-to-prom-jvm-demo>:/jmx-exporter \
-e CATALINA_OPTS=”-Xms32m -Xmx32m -javaagent:/jmx-exporter/jmx_prometheus_javaagent-0.3.1.jar=6060:/jmx-exporter/simple-config.yml” \
-p 6062:6060 \
-p 8082:8080 \
tomcat:8.5-alpine
5) 访问 http://localhost:8080|8081|8082 看看 Tomcat 是否启动成功。
6) 访问对应的 http://localhost:6060|6061|6062 看看 JMX exporter 提供的 metrics。
备注:这里提供的 simple-config.yml 仅仅提供了 JVM 的信息,更复杂的配置请参考 JMX exporter 文档。
第二步:启动 Prometheus
1) 在之前新建目录 prom-jvm-demo,新建一个文件 prom-jmx.yml,内容如下:
crape_configs:
– job_name: ‘java’
static_configs:
– targets:
– ‘<host-ip>:6060’
– ‘<host-ip>:6061’
– ‘<host-ip>:6062’
# alertmanager 的地址
alerting:
alertmanagers:
– static_configs:
– targets:
– ‘<host-ip>:9093’
# 读取告警触发条件规则
rule_files:
– ‘/prometheus-config/prom-alert-rules.yml’
2) 新建文件 prom-alert-rules.yml,该文件是告警触发规则:
# severity 按严重程度由高到低:red、orange、yello、blue
groups:
– name: jvm-alerting
rules:
# down 了超过 30 秒
– alert: instance-down
expr: up == 0
for: 30s
labels:
severity: yellow
annotations:
summary: “Instance {{$labels.instance}} down”
description: “{{$labels.instance}} of job {{$labels.job}} has been down for more than 30 seconds.”
# down 了超过 1 分钟
– alert: instance-down
expr: up == 0
for: 1m
labels:
severity: orange
annotations:
summary: “Instance {{$labels.instance}} down”
description: “{{$labels.instance}} of job {{$labels.job}} has been down for more than 1 minutes.”
# down 了超过 5 分钟
– alert: instance-down
expr: up == 0
for: 5m
labels:
severity: blue
annotations:
summary: “Instance {{$labels.instance}} down”
description: “{{$labels.instance}} of job {{$labels.job}} has been down for more than 5 minutes.”
# 堆空间使用超过 50%
– alert: heap-usage-too-much
expr: jvm_memory_bytes_used{job=”java”, area=”heap”} / jvm_memory_bytes_max * 100 > 50
for: 1m
labels:
severity: yellow
annotations:
summary: “JVM Instance {{$labels.instance}} memory usage > 50%”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [heap usage > 50%] for more than 1 minutes. current usage ({{$value}}%)”
# 堆空间使用超过 80%
– alert: heap-usage-too-much
expr: jvm_memory_bytes_used{job=”java”, area=”heap”} / jvm_memory_bytes_max * 100 > 80
for: 1m
labels:
severity: orange
annotations:
summary: “JVM Instance {{$labels.instance}} memory usage > 80%”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [heap usage > 80%] for more than 1 minutes. current usage ({{$value}}%)”
# 堆空间使用超过 90%
– alert: heap-usage-too-much
expr: jvm_memory_bytes_used{job=”java”, area=”heap”} / jvm_memory_bytes_max * 100 > 90
for: 1m
labels:
severity: red
annotations:
summary: “JVM Instance {{$labels.instance}} memory usage > 90%”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [heap usage > 90%] for more than 1 minutes. current usage ({{$value}}%)”
# 在 5 分钟里,Old GC 花费时间超过 30%
– alert: old-gc-time-too-much
expr: increase(jvm_gc_collection_seconds_sum{gc=”PS MarkSweep”}[5m]) > 5 * 60 * 0.3
for: 5m
labels:
severity: yellow
annotations:
summary: “JVM Instance {{$labels.instance}} Old GC time > 30% running time”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [Old GC time > 30% running time] for more than 5 minutes. current seconds ({{$value}}%)”
# 在 5 分钟里,Old GC 花费时间超过 50%
– alert: old-gc-time-too-much
expr: increase(jvm_gc_collection_seconds_sum{gc=”PS MarkSweep”}[5m]) > 5 * 60 * 0.5
for: 5m
labels:
severity: orange
annotations:
summary: “JVM Instance {{$labels.instance}} Old GC time > 50% running time”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [Old GC time > 50% running time] for more than 5 minutes. current seconds ({{$value}}%)”
# 在 5 分钟里,Old GC 花费时间超过 80%
– alert: old-gc-time-too-much
expr: increase(jvm_gc_collection_seconds_sum{gc=”PS MarkSweep”}[5m]) > 5 * 60 * 0.8
for: 5m
labels:
severity: red
annotations:
summary: “JVM Instance {{$labels.instance}} Old GC time > 80% running time”
description: “{{$labels.instance}} of job {{$labels.job}} has been in status [Old GC time > 80% running time] for more than 5 minutes. current seconds ({{$value}}%)”
3) 启动 Prometheus:
docker run -d \
–name=prometheus \
-p 9090:9090 \
-v <path-to-prom-jvm-demo>:/prometheus-config \
prom/prometheus –config.file=/prometheus-config/prom-jmx.yml
4) 访问 http://localhost:9090/alerts 应该能看到之前配置的告警规则:
如果没有看到三个 instance,那么等一会儿再试。
第三步:配置 Grafana
参考使用 Prometheus+Grafana 监控 JVM
第四步:启动 Alertmanager
1) 新建一个文件 alertmanager-config.yml:
global:
smtp_smarthost: ‘<smtp.host:ip>’
smtp_from: ‘<from>’
smtp_auth_username: ‘<username>’
smtp_auth_password: ‘<password>’
# The directory from which notification templates are read.
templates:
– ‘/alertmanager-config/*.tmpl’
# The root route on which each incoming alert enters.
route:
# The labels by which incoming alerts are grouped together. For example,
# multiple alerts coming in for cluster=A and alertname=LatencyHigh would
# be batched into a single group.
group_by: [‘alertname’, ‘instance’]
# When a new group of alerts is created by an incoming alert, wait at
# least ‘group_wait’ to send the initial notification.
# This way ensures that you get multiple alerts for the same group that start
# firing shortly after another are batched together on the first
# notification.
group_wait: 30s
# When the first notification was sent, wait ‘group_interval’ to send a batch
# of new alerts that started firing for that group.
group_interval: 5m
# If an alert has successfully been sent, wait ‘repeat_interval’ to
# resend them.
repeat_interval: 3h
# A default receiver
receiver: “user-a”
# Inhibition rules allow to mute a set of alerts given that another alert is
# firing.
# We use this to mute any warning-level notifications if the same alert is
# already critical.
inhibit_rules:
– source_match:
severity: ‘red’
target_match_re:
severity: ^(blue|yellow|orange)$
# Apply inhibition if the alertname and instance is the same.
equal: [‘alertname’, ‘instance’]
– source_match:
severity: ‘orange’
target_match_re:
severity: ^(blue|yellow)$
# Apply inhibition if the alertname and instance is the same.
equal: [‘alertname’, ‘instance’]
– source_match:
severity: ‘yellow’
target_match_re:
severity: ^(blue)$
# Apply inhibition if the alertname and instance is the same.
equal: [‘alertname’, ‘instance’]
receivers:
– name: ‘user-a’
email_configs:
– to: ‘<user-a@domain.com>’
修改里面关于 smtp_* 的部分和最下面 user- a 的邮箱地址。
备注:因为国内邮箱几乎都不支持 TLS,而 Alertmanager 目前又不支持 SSL,因此请使用 Gmail 或其他支持 TLS 的邮箱来发送告警邮件,见这个 issue
2) 新建文件 alert-template.tmpl,这个是邮件内容模板:
{{define “email.default.html”}}
<h2>Summary</h2>
<p>{{.CommonAnnotations.summary}}</p>
<h2>Description</h2>
<p>{{.CommonAnnotations.description}}</p>
{{end}}
3)运行下列命令启动:
docker run -d \
–name=alertmanager \
-v <path-to-prom-jvm-demo>:/alertmanager-config \
-p 9093:9093 \
prom/alertmanager –config.file=/alertmanager-config/alertmanager-config.yml
4) 访问 http://localhost:9093,看看有没有收到 Prometheus 发送过来的告警 (如果没有看到稍等一下):
第五步:等待邮件
等待一会儿(最多 5 分钟)看看是否收到邮件。如果没有收到,检查配置是否正确,或者 docker logs alertmanager 看看 alertmanager 的日志,一般来说都是邮箱配置错误导致。