原文链接:http://tecdat.cn/?p=26158
原文出处:拓端数据部落公众号
[]()
弹性网络正则化同时利用 L1 范数和 L2 范数正则化来惩办回归模型中的系数。为了在 R 中利用弹性网络正则化。在 LASSO回归中,咱们为 alpha 参数设置一个 '1' 值,并且在 岭回归中,咱们将 '0' 值设置为其 alpha 参数。弹性网络在 0 到 1 的范畴内搜寻最佳 alpha 参数。在这篇文章中,咱们将学习如何在 R 中利用弹性网络正则化。
首先,咱们将为本教程创立测试数据集。
df <- data.frame(a,b,c,z) x <- as.matrix(df)[,-4]
for (i in 1:length(alpha)) { bst$mse <- c(bet$mse, min(cg$cm))} inx <- which(bst$mse==min(bst$mse))betlha <- bs$a[inex]be_mse <- bst$mse[inex]
\
接下来,咱们再次应用最佳 alpha 进行穿插验证以取得 lambda(膨胀程度)。\
elacv <- cv(x, v)bestbda <- elacv$lambda.min
\
当初,咱们能够应用函数拟合具备最佳 alpha 和 lambda 值的模型。\
coef(elamod)
\
最初,咱们能够应用模型预测测试数据并计算 RMSE、R 平方和 MSE 值。\
\
predict(elasod, x)cat(" RMSE:", rmse, "\n", "R-squared:", R2, "\n", "MSE:", mse)
最受欢迎的见解
1.R语言多元Logistic逻辑回归 利用案例
2.面板平滑转移回归(PSTR)剖析案例实现剖析案例实现")
3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)
4.R语言泊松Poisson回归模型剖析案例
5.R语言回归中的Hosmer-Lemeshow拟合优度测验
6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
7.在R语言中实现Logistic逻辑回归
8.python用线性回归预测股票价格
9.R语言如何在生存剖析与Cox回归中计算IDI,NRI指标