作者:张武科
概述
严密核心度(Closeness Centrality)计量了一个节点到其余所有节点的紧密性,即该节点到其余节点的间隔的倒数;节点对应的值越高示意紧密性越好,可能在图中流传信息的能力越强,可用以掂量信息流入或流出该节点的能力,多用与社交网络中要害节点挖掘等场景。
算法介绍
对于图中一个给定节点,紧密性核心性是该节点到其余所有节点的最小间隔和的倒数:
其中,u示意待计算严密核心度的节点,d(u, v)示意节点u到节点v的最短门路间隔;理论场景中,更多地应用归一化后的严密核心度,即计算指标节点到其余节点的均匀间隔的倒数:
其中,n示意图中节点数。
算法实现
首先,基于AlgorithmUserFunction
接口实现ClosenessCentrality
,如下:
@Description(name = "closeness_centrality", description = "built-in udga for ClosenessCentrality")public class ClosenessCentrality implements AlgorithmUserFunction<Long, Long> { private AlgorithmRuntimeContext context; private long sourceId; @Override public void init(AlgorithmRuntimeContext context, Object[] params) { this.context = context; if (params.length != 1) { throw new IllegalArgumentException("Only support one arguments, usage: func(sourceId)"); } this.sourceId = ((Number) params[0]).longValue(); } @Override public void process(RowVertex vertex, Iterator<Long> messages) { List<RowEdge> edges = context.loadEdges(EdgeDirection.OUT); if (context.getCurrentIterationId() == 1L) { context.sendMessage(vertex.getId(), 1L); context.sendMessage(sourceId, 1L); } else if (context.getCurrentIterationId() == 2L) { context.updateVertexValue(ObjectRow.create(0L, 0L)); if (vertex.getId().equals(sourceId)) { long vertexNum = -2L; while (messages.hasNext()) { messages.next(); vertexNum++; } // 统计节点数 context.updateVertexValue(ObjectRow.create(0L, vertexNum)); // 向邻接点发送与指标点间隔 sendMessageToNeighbors(edges, 1L); } } else { if (vertex.getId().equals(sourceId)) { long sum = (long) vertex.getValue().getField(0, LongType.INSTANCE); while (messages.hasNext()) { sum += messages.next(); } long vertexNum = (long) vertex.getValue().getField(1, LongType.INSTANCE); // 记录最短距离和 context.updateVertexValue(ObjectRow.create(sum, vertexNum)); } else { if (((long) vertex.getValue().getField(1, LongType.INSTANCE)) < 1) { Long meg = messages.next(); context.sendMessage(sourceId, meg); // 向邻接点发送与指标点间隔 sendMessageToNeighbors(edges, meg + 1); // 标记该点已向指标点发送过音讯 context.updateVertexValue(ObjectRow.create(0L, 1L)); } } } } private void sendMessageToNeighbors(List<RowEdge> outEdges, Object message) { for (RowEdge rowEdge : outEdges) { context.sendMessage(rowEdge.getTargetId(), message); } } @Override public void finish(RowVertex vertex) { if (vertex.getId().equals(sourceId)) { long len = (long) vertex.getValue().getField(0, LongType.INSTANCE); long num = (long) vertex.getValue().getField(1, LongType.INSTANCE); context.take(ObjectRow.create(vertex.getId(), (double) num / len)); } } @Override public StructType getOutputType() { return new StructType( new TableField("id", LongType.INSTANCE, false), new TableField("cc", DoubleType.INSTANCE, false) ); }}
而后,可在 DSL 中引入自定义算法,间接调用应用,语法模式如下:
CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';INSERT INTO tbl_resultCALL closeness_centrality(1) YIELD (vid, ccValue)RETURN vid, ROUND(ccValue, 3);
示例示意,计算图中 id = 1
节点的严密核心度。
算法运行
在运行算法之前,要结构算法运行的底图数据。
图定义
首先,进行图定义:
CREATE GRAPH modern ( Vertex person ( id bigint ID, name varchar, age int ), Vertex software ( id bigint ID, name varchar, lang varchar ), Edge knows ( srcId bigint SOURCE ID, targetId bigint DESTINATION ID, weight double ), Edge created ( srcId bigint SOURCE ID, targetId bigint DESTINATION ID, weight double )) WITH ( storeType='rocksdb', shardNum = 1);
图构建
实现图定义之后,导入点边数据,结构数据底图:
CREATE TABLE modern_vertex ( id varchar, type varchar, name varchar, other varchar) WITH ( type='file', geaflow.dsl.file.path = 'resource:///data/modern_vertex.txt');CREATE TABLE modern_edge ( srcId bigint, targetId bigint, type varchar, weight double) WITH ( type='file', geaflow.dsl.file.path = 'resource:///data/modern_edge.txt');INSERT INTO modern.personSELECT cast(id as bigint), name, cast(other as int) as ageFROM modern_vertex WHERE type = 'person';INSERT INTO modern.softwareSELECT cast(id as bigint), name, cast(other as varchar) as langFROM modern_vertex WHERE type = 'software';INSERT INTO modern.knowsSELECT srcId, targetId, weightFROM modern_edge WHERE type = 'knows';INSERT INTO modern.createdSELECT srcId, targetId, weightFROM modern_edge WHERE type = 'created';
计算输入
最初,在底图数据上实现算法计算和后果输入;
CREATE TABLE tbl_result ( vid int, ccValue double) WITH ( type='file', geaflow.dsl.file.path='/tmp/result');CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';USE GRAPH modern;INSERT INTO tbl_resultCALL closeness_centrality(1) YIELD (vid, ccValue)RETURN vid, ROUND(ccValue, 3);
运行示例
input
// vertex1,person,marko,292,person,vadas,273,software,lop,java4,person,josh,325,software,ripple,java6,person,peter,35// edge1,3,created,0.41,2,knows,0.51,4,knows,1.04,3,created,0.44,5,created,1.03,6,created,0.2
output
// result1,0.714
结语
在本篇文章中咱们介绍了如何在TuGraph Analytics上实现严密核心度算法,如果你感觉比拟乏味,欢送关注咱们的社区(https://github.com/TuGraph-family/tugraph-analytics)。开源不易,如果你感觉还不错,能够给咱们star反对一下~
GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢送大家关注!!!
欢送给咱们 Star 哦!
Welcome to give us a Star!
GitHubhttps://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注咱们的博客 https://geaflow.github.io/