全文链接:http://tecdat.cn/?p=31162
最近咱们被客户要求撰写对于SV模型的钻研报告,包含一些图形和统计输入
本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化狭义矩预计法和准最大似然预计法预计。
模仿SV模型的预计办法:
sim <- svsim(1000,mu=-9, phi = 0.97, sigma = 0.15)print(sim)summary(sim)
plot(sim)
绘制上证指数收益工夫序列图、散点图、自相干图与偏自相干图
咱们选取上证指数5分钟高频数据:
data=read.csv("上证指数-5min.csv",header=TRUE)#open:开盘价 close:收盘价 vol:成交量 amount:成交额head(data,5) #察看数据的头5行tail(data,5) #察看数据的最初5行Close.ptd<-data$closeClose.rtd<-diff(log(Close.ptd)) #指标一:logReturnrets=diff(data$close)/data$close[-length(data$close)] #指标二:Daily Returns,咱们抉择Daily Returnslibrary(tseries)adf.test(rets)## 绘制上证指数收益工夫序列图、散点图、自相干图与偏自相干图Close.ptd.ts<-ts(Close.ptd,start=c(2005,1,4),freq=242) plot(Close.ptd.ts, type="l",main="(a) 上证指数日收盘价序列图",acf(Close.rtd,main='',xlab='Lag',ylab='ACF',las=1) title(main='(b) 上证指数收益率自相干测验',cex.main=0.95)pacf(Close.rtd,main='',xlab='Lag',ylab='PACF',las=1) title(main='(c) 上证指数收益率偏自相干测验',cex.main=0.95)def.off## Q-Q图、教训累积散布ecdf图、密度图、直方图 qqnorm(Close.rtd,main="(a) 上证指数收益率Q-Q图",cex.main=0.95, xlab='实践分位数',ylab='样本分位数') qqline(Close.rtd) #教训累积散布ecdf图plot(ECD,lwd = 2,main="(b) 上证指数收益率累积散布函数图",cex.main=0.95,las=1) xx <- unique(sort(c(seq(-3, 2, length=24), knots(ECD)))) abline(v = knots(ECD), lty=2, col='gray70') x1 <- c((-4):3) # 设定区间范畴lines(x1,pnorm(x1,mean(Close.rtdC[1:10]),sd(Close.rtd[1:10]))) #密度图plot(D, main="(c) 上证指数核密度曲线图 ",xlab="收益", ylab='密度', xlim = c(-7,7), ylim=c(0,0.5),cex.main=0.95) polygon(D, col="gray", border="black") curve(dnorm,lty = 2, add = TRUE) lines(x2,dnorm(x2,mean=0,sd=1)) abline(v=0,lty = 3) legend("topright", legend=c("核密度","正态密度"),lty=c(1,2),cex=0.5)#直方图hist(Close.rtd[1:100],xaxt='n',main='(d) 上证指数收益率直方图', xlab='收益/100',ylab='密度', freq=F,cex.main=0.95,las=1) lines(x2,dnorm(x2,mean(Close.rtd[1:100]),sd(Close.rtd[1:100]))) axis(1,at=axTicks(1),labels = as.integer(axTicks(1))/100 )
点击题目查阅往期内容
【视频】随机稳定率SV模型原理和Python对标普SP500股票指数预测|数据分享
左右滑动查看更多
01
02
03
04
SV模型
{ N <- length(logReturn) mu <- (1/N)*sum(logReturn) sqrt((1/N) * sum((logReturn - mu)^2))} return=-1.5*log(h)-y^2/(2*h)-(log(h)-mu)^2/(2*sigma2)}
马尔可夫链蒙特卡罗预计
该模型应用了Kastner和Fruhwirth-Schnatter所形容的算法。应用的R代码是:
###Markov Chain Monte Carlosummary(mcmc)
准最大似然预计
SV模型能够用QML办法在R中用许多不同的状态空间和Kalman滤波包来预计。
a0=c(parm[1]) P0=matrix(parm[3]^2/(1-parm[2]^2)) dt=matrix(parm[1]*(1-parm[2])) ct=matrix(-1.27) Tt=matrix(parm[2]) Zt=matrix(1) HHt=matrix(parm[3]^2) GGt=matrix(pi^2/2) ans<-fkf(a0=sp$a0,P0=sp$P0,dt=sp$dt,ct=sp$ct,Tt=sp$Tt,Zt=sp$Zt,HHt=sp$HHt,GG
正则化狭义矩阵
在R函数中定义矩条件,而后预计参数0。
moments <- c ( m1 = sqrt(2/pi)*exp(mu/2 + sig2h/8), m2 = exp(mu + sig2h/2 ) , m3 = 2*sqrt ( 2/pi ) * exp( 3*mu/2 + 9*sig2h/8 ) , gmm(g = sv.moments , x =rets , t0=c(mu=-10, phi=0.9,sigmaeta= 0.2),
点击文末 “浏览原文”
获取全文残缺代码数据资料。
本文选自《R语言随机稳定模型SV:马尔可夫蒙特卡罗法MCMC、正则化狭义矩预计和准最大似然预计上证指数收益工夫序列》。
点击题目查阅往期内容
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频稳定率
Matlab马尔可夫链蒙特卡罗法(MCMC)预计随机稳定率(SV,Stochastic Volatility) 模型
R语言隐马尔可夫模型HMM间断序列重要性重抽样CSIR预计随机稳定率模型SV剖析股票收益率工夫序列
马尔可夫Markov区制转移模型剖析基金利率
马尔可夫区制转移模型Markov regime switching
时变马尔可夫区制转换MRS自回归模型剖析经济工夫序列
马尔可夫转换模型钻研交通伤亡人数事变工夫序列预测
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
Matlab用BUGS马尔可夫区制转换Markov switching随机稳定率模型、序列蒙特卡罗SMC、M H采样剖析工夫序列
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机稳定率SV模型、粒子滤波、Metropolis Hasting采样工夫序列剖析
matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型剖析汽车试验数据
stata马尔可夫Markov区制转移模型剖析基金利率
PYTHON用时变马尔可夫区制转换(MRS)自回归模型剖析经济工夫序列
R语言应用马尔可夫链对营销中的渠道归因建模
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型预计
R语言隐马尔可夫模型HMM辨认一直变动的股票市场条件
R语言中的隐马尔可夫HMM模型实例
用机器学习辨认一直变动的股市情况—隐马尔科夫模型(HMM)
Matlab马尔可夫链蒙特卡罗法(MCMC)预计随机稳定率(SV,Stochastic Volatility) 模型
MATLAB中的马尔可夫区制转移(Markov regime switching)模型
Matlab马尔可夫区制转换动静回归模型预计GDP增长率
R语言马尔可夫区制转移模型Markov regime switching
stata马尔可夫Markov区制转移模型剖析基金利率
R语言如何做马尔可夫转换模型markov switching model
R语言隐马尔可夫模型HMM辨认股市变动剖析报告
R语言中实现马尔可夫链蒙特卡罗MCMC模型