概要
RPC(Remote Procedure Call)是指近程过程调用,也就是说两台服务器A,B,一个利用部署在A服务器上,想要调用B服务器上利用提供的函数/办法。在分布式系统中的零碎环境建设和利用程序设计中有着宽泛的利用。
常见的RPC框架有
- Apache Dubbo
- Google gRPC
- Apache Thrift
- Spring Cloud的Http实现
优良的开源框架有高性能,能够像调用本地办法一样调用近程服务,本文着重探讨以下流程的实现
- 低侵入
- 利用Netty自定义网络协议实现近程调用
本文的代码可在github上自取,
链接:https://github.com/tangbu/myrpc
RPC的流程
以上,咱们能够看到在实现RPC的过程中,咱们须要着重解决一下几点
- 低侵入(咱们应用动静代理来实现办法级别间接调用)
- 实现RpcRequest和RpcResponse的序列化和反序列化
- 基于TCP自定义报文,承载RpcRequest和RpcResponse
- 解决网络连接,网络传输
代码实现
动静代理实现低侵入(咱们应用jdk动静代理)
假如应用层存在这样一个接口
public interface HelloWorldService { String helloWorld(String name);}
咱们在调用HelloWorldService#helloWorld的时候,心愿自定义外面的逻辑,应用RPC来调用,为此咱们就应用动静代理来实现
public class DynamicProxy implements InvocationHandler { @Override public Object invoke(Object proxy, Method method, Object[] args) throws ExecutionException, InterruptedException, JsonProcessingException { System.out.println("在调用办法时走到了动静代理外面"); return null; }}
在真正调用helloWorld办法的时候应用如下代码
Class<?> helloWorldServiceClass = HelloWorldService.class; //创立代理类对象 HelloWorldService so = (HelloWorldService) Proxy.newProxyInstance(helloWorldServiceClass.getClassLoader(), new Class[]{HelloWorldService.class}, new DynamicProxy()); String result1 = so.helloWorld("zhangsan");
此时,原有接口的逻辑就调到了动静代理办法外面。之后,咱们会将RPC的实现封装在DynamicProxy这个办法里的实现中。
封装RpcRequest对象和RpcResponse对象
在执行近程调用的时候,必须通知近程服务,我须要调用那个类,那个办法,办法参数是哪些,入参是什么才能够让他返回后果给我,所以须要封装一下RpcRequest对象和RpcResponse对象
public class RpcRequest { private String requestId; private String className; private String methodName; private Class<?>[] parameterTypes; private Object[] parameters; private int version;// getter setter...}public class RpcResponse { private String requestId; private boolean success; private String message; private Object result;// getter setter...}
定义网络协议,将RpcRequest和RpcResponse写成字节放在网络报文中传输
自定义报文构造
0----7----15---23---31| 1 | 2 | ---------------------| 2 | 3 | 4 |..... 4前面的是音讯体 ---------------------......5.......--------------------- 序号1 0-7 version 1byte序号2 7-39 总报文长度 4byte序号3 39-47 type音讯类型 1byte序号4 47-77 priority音讯优先级 1byte序号5 依据报文总长度减掉1-4的长度就是5的长度
相应的依据这个报文构造,能够形象出咱们的TCP的报文Java类
/** * @author tangbu */public final class NettyMessage { private byte version = 1; private int length;// 音讯长度 private byte type;// 音讯类型 private byte priority;// 音讯优先级; private JsonNode body; // 目前全副用json传递申请}
针对报文构造编写Netty的编码器和解码器
编码器的实现 由NettyMessage对象变成网络字节
/** * @author tangbu */public class NettyMessageEncoder extends MessageToByteEncoder<NettyMessage> { private ObjectMapper mapper = new ObjectMapper(); @Override protected void encode(ChannelHandlerContext ctx, NettyMessage msg, ByteBuf out) throws Exception { out.writeByte(msg.getVersion()); out.writeInt(msg.getLength()); out.writeByte(msg.getType()); out.writeByte(msg.getPriority()); JsonNode body = msg.getBody(); try { byte[] jsonBytes = mapper.writeValueAsBytes(body); out.writeBytes(jsonBytes); } catch (JsonProcessingException e) { throw new RuntimeException(e); } // 最初填充报文长度 out.setInt(1, out.readableBytes()); }}
解码器的实现由网络字节变成NettyMessage对象
网络报文接收端须要做两件事件
依据报文的Length字段的长度从TCP流中读取一整个NettyMessage对象长度。
发送到网络中的字节以流的模式传输,如果没有指定的拆包规定,报文就像没有标点符号一样字节发送到接收端,造成下层利用无奈辨认,所以须要拆包,netty提供了针对固定报文构造的拆包器,对于咱们的报文来说,长度占4个字节、报文首部偏移量为1,所以应用这个new LengthFieldBasedFrameDecoder(1460, 1, 4, -5, 0)
这个来进行拆包, 通过这个解码器的报文就被拆成一整个NettyMessage的一段段字节了
读取到字节须要反序列化成一个NettyMessage对象。
相应的字节须要转换成NettyMessage对象,咱们就应用一个对象解码器来进行解码public class NettyMessageDecoder extends ChannelInboundHandlerAdapter { ObjectMapper mapper = new ObjectMapper(); @Override public void channelRead(ChannelHandlerContext ctx, Object obj) throws Exception { ByteBuf byteBuf= (ByteBuf) obj; if (byteBuf == null){ return ; } NettyMessage message = new NettyMessage(); message.setVersion(byteBuf.readByte()); message.setLength(byteBuf.readInt()); message.setType(byteBuf.readByte()); message.setPriority(byteBuf.readByte()); byte[] bodyBytes = new byte[message.getLength() - 7]; byteBuf.readBytes(bodyBytes); JsonNode jsonNode = null; try { jsonNode = mapper.readValue(bodyBytes, JsonNode.class); } catch (IOException e) { throw new RuntimeException(e); } message.setBody(jsonNode); ctx.fireChannelRead(message); }
这样,网络申请接收端就能够把承受到的字节读取成NettyMessage对象了。
解决RPC的客户端和服务端逻辑
RPC客户端的申请
解决逻辑封装在动静代理类中
public class DynamicProxy implements InvocationHandler { @Override public Object invoke(Object proxy, Method method, Object[] args) throws ExecutionException, InterruptedException, JsonProcessingException { if ("toString".equals(method.getName())){ return proxy.toString(); } RpcRequest request = new RpcRequest(); request.setRequestId(UUID.randomUUID().toString()); request.setClassName(method.getDeclaringClass().getName()); request.setMethodName(method.getName()); request.setParameterTypes(method.getParameterTypes()); request.setParameters(args); request.setVersion(1); System.out.println("动静代理封装的request"+ request); System.out.println("----------------执行近程调用--------"); RpcResponse response = invokeRpc(request); System.out.println("近程调用返回的后果"+ response); return response.getResult(); } int count = 0; private RpcResponse invokeRpc(RpcRequest request) throws ExecutionException, InterruptedException, JsonProcessingException { count++; NettyClientHandler nettyClientHandler = ChannelHandlerManager.chooseHandler("127.0.0.1", count % 2 == 0 ? 8888 : 8889); RpcReqResponseFuture rpcReqResponseFuture = nettyClientHandler.sendRpcRequest(request); return rpcReqResponseFuture.get(); }}
与此同时,在客户端记录连贯,和request编号和返回的response对应造成回调。
public class NettyClientHandler extends ChannelInboundHandlerAdapter { private ObjectMapper mapper = new ObjectMapper(); private ChannelHandlerContext ctx; private Map<String, RpcReqResponseFuture> reqRespFutures = new HashMap<>(); private Executor executor = Executors.newFixedThreadPool(5); @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { System.out.println("连贯服务提供者" + ctx.channel().remoteAddress() + "胜利"); this.ctx = ctx; ChannelHandlerManager.register(this); } public RpcReqResponseFuture sendRpcRequest(RpcRequest request) throws JsonProcessingException { RpcReqResponseFuture future = new RpcReqResponseFuture(request, executor); reqRespFutures.put(request.getRequestId(), future); NettyMessage nettyMessage = new NettyMessage(); nettyMessage.setType((byte) 1); nettyMessage.setPriority((byte) 2); nettyMessage.setBody(mapper.readValue(mapper.writeValueAsString(request), JsonNode.class)); ctx.channel().writeAndFlush(nettyMessage); return future; } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { NettyMessage message = (NettyMessage) msg; System.out.println("服务器回复的Frame:" + message); JsonNode body = message.getBody(); RpcResponse response = mapper.readValue(body.toString(), RpcResponse.class); String requestId = response.getRequestId(); RpcReqResponseFuture future = reqRespFutures.get(requestId); future.done(response); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); ctx.fireExceptionCaught(cause); } public ChannelHandlerContext getCtx() { return ctx; }}
在服务端注册好真正的HelloWorld实现类来执行后果,返回RpcResponse
/** * @author tangbu */public class NettyServerHandler extends ChannelInboundHandlerAdapter { public static Map<String,Object> serviceMap = new HashMap<>(); private ObjectMapper mapper = new ObjectMapper(); @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { NettyMessage message = (NettyMessage) msg; System.out.println("服务端收到的音讯是:" + message); JsonNode rpcRequestBody = message.getBody(); RpcRequest rpcRequest = mapper.readValue(rpcRequestBody.toString(), RpcRequest.class); RpcResponse rpcResponse = handleRpcRequest(rpcRequest); NettyMessage response = new NettyMessage(); response.setType((byte) 1); response.setPriority((byte) 2); response.setBody(mapper.readValue(mapper.writeValueAsString(rpcResponse), JsonNode.class)); ctx.channel().writeAndFlush(response); } private RpcResponse handleRpcRequest(RpcRequest rpcRequest) { String requestId = rpcRequest.getRequestId(); RpcResponse response = new RpcResponse(); response.setRequestId(requestId); try { String className = rpcRequest.getClassName(); String methodName = rpcRequest.getMethodName(); Class<?>[] parameterTypes = rpcRequest.getParameterTypes(); Object[] parameters = rpcRequest.getParameters(); Object o = serviceMap.get(className); if (o == null){ throw new DkRuntimeException("服务不存在"); } Class clazz = Class.forName(className); Method method = clazz.getMethod(methodName, parameterTypes); Object result = method.invoke(o, parameters); response.setSuccess(true); response.setResult(result); } catch (Exception e) { response.setSuccess(false); response.setMessage(e.getMessage()); } return response; } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); ctx.fireExceptionCaught(cause); }}
测试
启动两个NettyServer,
绑定8888和8889,别离注册HelloWorldImpl1和HelloWorldImpl2的实现
public class NettyServer1 { public static void main(String[] args) throws InterruptedException { EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(1); Map<String, Object> serviceMap = new HashMap<>();// HelloWorldServiceImpl1 serviceMap.put(HelloWorldService.class.getName(), new HelloWorldServiceImpl1()); NettyServerHandler.serviceMap = serviceMap; try { ServerBootstrap bootstrap = new ServerBootstrap(); bootstrap.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childOption(ChannelOption.SO_KEEPALIVE,true) .childHandler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new LengthFieldBasedFrameDecoder(1460, 1, 4, -5, 0)); ch.pipeline().addLast(new NettyMessageDecoder()); ch.pipeline().addLast(new NettyMessageEncoder()); ch.pipeline().addLast(new NettyServerHandler()); } });// 一个服务绑定8888,一个绑定8889端口 ChannelFuture cf = bootstrap.bind(8888).sync(); cf.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture channelFuture) throws Exception { if (channelFuture.isSuccess()) { System.out.println("监听端口 " + 8888 + " 胜利"); } else { System.out.println("监听端口 " + 8888 + " 失败"); } } }); cf.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }}
构建Netty客户端,测试时同时和两个NettyServer建设连贯
public class NettyClient implements Runnable { private String ip; private int port; public NettyClient(String ip, int port) { this.ip = ip; this.port = port; } @Override public void run() { EventLoopGroup group = new NioEventLoopGroup(1); try { Bootstrap bootstrap = new Bootstrap(); bootstrap.group(group) .channel(NioSocketChannel.class) .handler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new LengthFieldBasedFrameDecoder(1460, 4, 4, -8, 0)); ch.pipeline().addLast(new NettyMessageDecoder()); ch.pipeline().addLast(new NettyMessageEncoder()); ch.pipeline().addLast(new NettyClientHandler()); } }); System.out.println("客户端 ok.."); ChannelFuture connect = bootstrap.connect(new InetSocketAddress(ip, port)); try { connect.channel().closeFuture().sync(); } catch (InterruptedException e) { e.printStackTrace(); } } finally { group.shutdownGracefully(); } }}
执行程序
@Test public void test2() throws InterruptedException { new Thread(new NettyClient("127.0.0.1",8888)).start(); new Thread(new NettyClient("127.0.0.1",8889)).start(); Thread.sleep(3000); Class<?> helloWorldServiceClass = HelloWorldService.class; System.out.println(); System.out.println(); //创立代理类对象 HelloWorldService so = (HelloWorldService) Proxy.newProxyInstance(helloWorldServiceClass.getClassLoader(), new Class[]{HelloWorldService.class}, new DynamicProxy()); String result1 = so.helloWorld("zhangsan"); Thread.sleep(1000000L); }
如图,近程调用胜利,繁难的RPC代码失去了实现
瞻望
后续能够改良的计划
- 减少Netty的异步实现,缩小收发申请的阻塞
- 联合spring在BeanPostProcessor中对Bean进行加强,对立动静代理。
- 能够独自抽出RpcClient局部和RpcServer局部,不对利用裸露细节
- 减少注册核心,容错,负载平衡,实现高可用