title: 卡特兰数
date: 2021-02-28 16:27:10
tags: 算法
概念
卡特兰数 的通项公式为
$$f \left( n \right) = \frac{1}{n+1} C_{2n}^{n}$$
又依据 组合数的计算公式:
可得:
$$f \left(n \right) = \frac{1}{n+1} \frac{(2n)!}{n!\cdot n!} = \frac{(2n)!}{(n+1)!\cdot n!} $$
同时满足递推关系式:
$$f \left(0 \right) = 1, f \left(n+1 \right) = \frac{2(2n+1)}{n+2} \cdot f \left(n \right) $$
利用
<font color="#008B8B">1.括号化问题(或者01的个数问题)</font>
矩阵链乘: P=a1×a2×a3×……×an,根据乘法结合律,不扭转其程序,只用括号示意成对的乘积,试问有几种括号化的计划?(h(n)种)
<font color="#008B8B">2.出栈秩序问题</font>
一个栈(无穷大)的进栈序列为1,2,3,…n,有多少个不同的出栈序列?
与 问题1解法雷同, 进栈相当于左括号,出栈相当于右括号
另两个相似例子:
(1)有2n集体排成一行进入剧场(或者商店买货色)。入场费5元。其中只有n集体有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中办法使得只有有10元的人买票,售票处就有5元的钞票找零?(将持5元者达到视作将5元入栈,持10元者达到视作使栈中某5元出栈)
还是与1相似,5块钱相当于左括号,10块钱相当于右括号
(2)在圆上抉择2n个点,将这些点成对连接起来,使得所失去的n条线段不相交的办法数。
<font color="#008B8B">3.凸多边形问题</font>
(1)一个凸的n边形,用直线连贯他的两个顶点使之分成多个三角形,每条直线不能相交,问一共有多少种划分计划。
(2)相似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去下班。如果她从不穿梭(但能够碰到)从家到办公室的对角线,那 么有多少条可能的路线?
(3)相似:在圆上抉择2n个点,将这些点成对连接起来使得所失去的n条线段不相交的办法数?
例如n+2个点的凸多边形,这里n=4,通过卡特兰数的推导能够得出h(4)=14。
<font color="#008B8B">4.给定节点组成二叉树的问题</font>
给定N个节点,能形成多少种形态不同的二叉树?
先取一个点作为顶点,而后右边顺次能够取0至N-1个,绝对应的,左边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +…+ h(n-1)h(0)=h(n)(能形成h(N)个)
leetcode-96 不同的二叉搜寻树
<font color="#008B8B">5.n*n棋盘从左下角走到右上角而不穿过主对角线的走法</font>
a.在 nn的格子中,只在下三角行走,每次横或竖走一格,有多少中走法?其实向右走相当于进栈, 向左走相当于出栈,实质就是n个数出栈秩序的问题,所以答案就是卡特兰数。(利用这个模型,能够解决这个卡特兰问题的变形问题,并顺便给进出栈问题的解法一个几何解释)
b.有n+1个叶子的满二叉树的个数?事实上,向左记为+1,向右记为−1,依照向左优先的准则,从根节点开始遍历.例如第一个图记为+1,+1,+1,−1,−1,−1,于是由卡特兰数的含意可得满二叉树的个数为Cn。
参考:
卡特兰(Catalan)数概念的简要介绍
史上最具体的卡特兰数浅谈
卡特兰数的证实
LeetCode 96之卡特兰数
卡特兰数/概率/蓄水池抽样
本文由mdnice多平台公布