1.高斯卷积核可视化
#设置卷积核大小K_size,像素长度l K_size = 3 l = 50 pad = K_size // 2 img = np.zeros([K_size * 50, K_size * 50, 3], dtype=np.uint8) for i in range(K_size): for j in range(K_size): #绘制卷积两头地位 if i == pad and j == pad: x = i * l y = j * l img[x: x + 47, y: y + 47] = (0, 0, 100) cv2.putText(img, str(0.16), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2) #绘制最靠近核心的地位 elif i + j == 3 or i + j == 1: x = i * l y = j * l img[x: x + 47, y: y + 47] = (50, 0, 0) cv2.putText(img, str(0.12), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2) #绘制角落 else: x = i * l y = j * l img[x: x + 47, y: y + 47] = (100, 0, 0) cv2.putText(img, str(0.09), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2)
失去图像