1.高斯卷积核可视化

   #设置卷积核大小K_size,像素长度l   K_size = 3   l = 50   pad = K_size // 2   img = np.zeros([K_size * 50, K_size * 50, 3], dtype=np.uint8)   for i in range(K_size):      for j in range(K_size):        #绘制卷积两头地位         if i == pad and j == pad:            x = i * l            y = j * l            img[x: x + 47, y: y + 47] = (0, 0, 100)            cv2.putText(img, str(0.16), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2)        #绘制最靠近核心的地位         elif i + j == 3 or i + j == 1:            x = i * l            y = j * l            img[x: x + 47, y: y + 47] = (50, 0, 0)            cv2.putText(img, str(0.12), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2)        #绘制角落         else:            x = i * l            y = j * l            img[x: x + 47, y: y + 47] = (100, 0, 0)            cv2.putText(img, str(0.09), (j * l + 5, (i + 1) * l - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 0), 2)

失去图像