• 1.说在后面的话
  • 2.装置employees测试库
  • 3.观测SQL运行状态
    • 3.1 观测SQL运行时的内存耗费
    • 3.2 观测SQL运行时的其余开销
    • 3.3 观测SQL运行进度
感知SQL运行时的状态

1. 说在后面的话

在MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创立长期表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,点燃潜在隐患。

从MySQL 5.7版本开始,performance_schema就默认启用了,并且还减少了sys schema,到了8.0版本又进一步失去加强晋升,在SQL运行时就能察看到很多有用的信息,实现肯定水平的可观测性。

上面举例说明如何进行观测,以及次要观测哪些指标。

2. 装置employees测试库

装置MySQL官网提供的employees测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始装置:

$ mysql -f < employees.sql;INFOCREATING DATABASE STRUCTUREINFOstorage engine: InnoDBINFOLOADING departmentsINFOLOADING employeesINFOLOADING dept_empINFOLOADING dept_managerINFOLOADING titlesINFOLOADING salariesdata_load_time_diff00:00:37

MySQL还提供了相应的应用文档:https://dev.mysql.com/doc/employee/en/

本次测试采纳GreatSQL 8.0.32-24版本,且运行在MGR环境中:

greatsql> \s...Server version:         8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c...greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;+--------------------------------------+-------------+----------------+| MEMBER_ID                            | MEMBER_ROLE | MEMBER_VERSION |+--------------------------------------+-------------+----------------+| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY   | 8.0.32         || 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR  | 8.0.32         || 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY     | 8.0.32         |+--------------------------------------+-------------+----------------+

3. 观测SQL运行状态

查看以后连贯/会话的连贯ID、外部线程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();+----------------+-----------+| processlist_id | thread_id |+----------------+-----------+|            110 |       207 |+----------------+-----------+

查问失去以后的连贯ID=110,外部线程ID=207。

P.S,因为本文整顿过程不是间断的,所以上面看到的 thread_id 值可能会有好几个,每次都不同。

3.1 观测SQL运行时的内存耗费

执行上面的SQL,查问所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:

greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: salaries   partitions: NULL         type: indexpossible_keys: PRIMARY          key: PRIMARY      key_len: 7          ref: NULL         rows: 2838426     filtered: 100.00        Extra: Using temporary; Using filesort

看到须要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还须要生成长期表,以及额定的filesort。

在正式运行该SQL之前,在另外的窗口中新建一个连贯会话,执行上面的SQL先察看该连贯/会话以后的内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G*************************** 1. row ***************************         thread_id: 207              user: root@localhostcurrent_count_used: 9 current_allocated: 26266 current_avg_alloc: 2918.4444 current_max_alloc: 16464   total_allocated: 30311

等到该SQL执行完了,再一次查问内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G*************************** 1. row ***************************         thread_id: 207              user: root@localhostcurrent_count_used: 13 current_allocated: 24430 current_avg_alloc: 1879.2308 current_max_alloc: 16456   total_allocated: 95719

咱们留神到几个数据的变动状况,用上面表格来展现:

指标运行前运行后
total_allocated3031195719

也就是说,SQL运行时,须要调配的内存是:95719 - 30311 = 65408 字节。

3.2 观测SQL运行时的其余开销

通过观察 performance_schema.status_by_thread 表,能够晓得相应连贯/会话中SQL运行的一些状态指标。在SQL运行完结后,执行上面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;...|       207 | Created_tmp_disk_tables             | 0                        ||       207 | Created_tmp_tables                  | 0                        |...|       207 | Handler_read_first                  | 1                        ||       207 | Handler_read_key                    | 1                        ||       207 | Handler_read_last                   | 0                        ||       207 | Handler_read_next                   | 2844047                  ||       207 | Handler_read_prev                   | 0                        ||       207 | Handler_read_rnd                    | 0                        ||       207 | Handler_read_rnd_next               | 0                        ||       207 | Handler_rollback                    | 0                        ||       207 | Handler_savepoint                   | 0                        ||       207 | Handler_savepoint_rollback          | 0                        ||       207 | Handler_update                      | 0                        ||       207 | Handler_write                       | 0                        ||       207 | Last_query_cost                     | 286802.914893            ||       207 | Last_query_partial_plans            | 1                        |...|       207 | Select_full_join                    | 0                        ||       207 | Select_full_range_join              | 0                        ||       207 | Select_range                        | 0                        ||       207 | Select_range_check                  | 0                        ||       207 | Select_scan                         | 1                        ||       207 | Slow_launch_threads                 | 0                        ||       207 | Slow_queries                        | 1                        ||       207 | Sort_merge_passes                   | 0                        ||       207 | Sort_range                          | 0                        ||       207 | Sort_rows                           | 1                       ||       207 | Sort_scan                           | 1                        |...

下面咱们只列举了局部比拟重要的状态指标。从这个后果也能够佐证slow query log中的后果,的确没创立长期表。

作为参照,查看这条SQL对应的slow query log记录:

# Query_time: 0.585593  Lock_time: 0.000002 Rows_sent: 10  Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0# Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0# InnoDB_trx_id: 0# Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000#   InnoDB_pages_distinct: 4281use employees;SET timestamp=1688609161;select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

能够看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等几个指标的数值是一样的。

还能够查看该SQL运行时的I/O latency状况,SQL运行前后两次查问比照:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| root@localhost |     7 | 75.39 us      | 5.84 us     | 10.77 us    | 22.12 us    |       207 |            110 |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+...greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| root@localhost |     8 | 85.29 us      | 5.84 us     | 10.66 us    | 22.12 us    |       207 |            110 |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

能够看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 观测SQL运行进度

咱们晓得,运行完一条SQL后,能够利用PROFLING性能查看它各个阶段的耗时,然而在运行时如果也想查看各阶段耗时该怎么办呢?

从MySQL 5.7版本开始,能够通过 performance_schema.events_stages_% 相干表查看SQL运行过程以及各阶段耗时,须要先批改相干设置:

# 确认是否对所有主机&用户都启用greatsql> SELECT * FROM performance_schema.setup_actors;+------+------+------+---------+---------+| HOST | USER | ROLE | ENABLED | HISTORY |+------+------+------+---------+---------+| %    | %    | %    | NO      | NO      |+------+------+------+---------+---------+# 批改成对所有主机&用户都启用greatsql> UPDATE performance_schema.setup_actors SET ENABLED = 'YES', HISTORY = 'YES' WHERE HOST = '%' AND USER = '%'; # 批改 setup_instruments & setup_consumers 设置greatsql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%events_statements_%'; greatsql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%events_stages_%'; 

这就实时能够观测SQL运行过程中的状态了。

在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID

greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT        FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+| EVENT_ID | Duration | SQL_TEXT                                                                                                                      |+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+|   149845 |   0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||   149803 |   0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||   149782 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||   149761 |   0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||   149740 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+# 再依据 EVENT_ID 值去查问 events_stages_history_longgreatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration  FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;+-----------+----------+------------------------------------------------+----------+| thread_id | event_Id | Stage                                          | Duration |+-----------+----------+------------------------------------------------+----------+|        85 |   149846 | stage/sql/starting                             |   0.0000 ||        85 |   149847 | stage/sql/Executing hook on transaction begin. |   0.0000 ||        85 |   149848 | stage/sql/starting                             |   0.0000 ||        85 |   149849 | stage/sql/checking permissions                 |   0.0000 ||        85 |   149850 | stage/sql/Opening tables                       |   0.0000 ||        85 |   149851 | stage/sql/init                                 |   0.0000 ||        85 |   149852 | stage/sql/System lock                          |   0.0000 ||        85 |   149854 | stage/sql/optimizing                           |   0.0000 ||        85 |   149855 | stage/sql/statistics                           |   0.0000 ||        85 |   149856 | stage/sql/preparing                            |   0.0000 ||        85 |   149857 | stage/sql/Creating tmp table                   |   0.0000 ||        85 |   149858 | stage/sql/executing                            |   0.6257 ||        85 |   149859 | stage/sql/end                                  |   0.0000 ||        85 |   149860 | stage/sql/query end                            |   0.0000 ||        85 |   149861 | stage/sql/waiting for handler commit           |   0.0000 ||        85 |   149862 | stage/sql/closing tables                       |   0.0000 ||        85 |   149863 | stage/sql/freeing items                        |   0.0000 ||        85 |   149864 | stage/sql/logging slow query                   |   0.0000 ||        85 |   149865 | stage/sql/cleaning up                          |   0.0000 |+-----------+----------+------------------------------------------------+----------+

下面就是这条SQL的运行进度展现,以及各个阶段的耗时,和PROFILING的输入一样,当咱们理解一条SQL运行所须要经验的各个阶段时,从下面的输入后果中也就能估算出该SQL大略还要多久能跑完,决定是否要提前kill它。

如果想要察看DDL SQL的运行进度,能够参考这篇文章:不必MariaDB/Percona也能查看DDL的进度。

更多的观测指标、维度还有待持续开掘,当前有机会再写。

另外,也能够利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。

延长浏览

  • Query Profiling Using Performance Schema, https://dev.mysql.com/doc/refman/8.0/en/performance-schema-qu...
  • 不必MariaDB/Percona也能查看DDL的进度,https://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653931...
  • 事件记录 | performance_schema全方位介绍,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=26539350...
  • 内存调配统计视图 | 全方位意识 sys 零碎库,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=26539351...

Enjoy GreatSQL :)

## 对于 GreatSQL

GreatSQL是实用于金融级利用的国内自主开源数据库,具备高性能、高牢靠、高易用性、高平安等多个外围个性,能够作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相干链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

技术交换群:

微信:扫码增加GreatSQL社区助手微信好友,发送验证信息加群