在Pandas 2.0公布当前,咱们公布过一些评测的文章,这次咱们看看,除了Pandas以外,罕用的两个都是为了大数据处理的并行数据框架的比照测试。
本文咱们应用两个相似的脚本来执行提取、转换和加载(ETL)过程。
测试内容
这两个脚本次要性能包含:
从两个parquet 文件中提取数据,对于小型数据集,变量path1将为“yellow_tripdata/ yellow_tripdata_2014-01”,对于中等大小的数据集,变量path1将是“yellow_tripdata/yellow_tripdata”。对于大数据集,变量path1将是“yellow_tripdata/yellow_tripdata*.parquet”;
进行数据转换:a)连贯两个DF,b)依据PULocationID计算行程间隔的平均值,c)只抉择某些条件的行,d)将步骤b的值四舍五入为2位小数,e)将列“trip_distance”重命名为“mean_trip_distance”,f)对列“mean_trip_distance”进行排序
将最终的后果保留到新的文件
脚本
1、Polars
数据加载读取
def extraction(): """ Extract two datasets from parquet files """ path1="yellow_tripdata/yellow_tripdata_2014-01.parquet" df_trips= pl_read_parquet(path1,) path2 = "taxi+_zone_lookup.parquet" df_zone = pl_read_parquet(path2,) return df_trips, df_zone def pl_read_parquet(path, ): """ Converting parquet file into Polars dataframe """ df= pl.scan_parquet(path,) return df
转换函数
def transformation(df_trips, df_zone): """ Proceed to several transformations """ df_trips= mean_test_speed_pl(df_trips, ) df = df_trips.join(df_zone,how="inner", left_on="PULocationID", right_on="LocationID",) df = df.select(["Borough","Zone","trip_distance",]) df = get_Queens_test_speed_pd(df) df = round_column(df, "trip_distance",2) df = rename_column(df, "trip_distance","mean_trip_distance") df = sort_by_columns_desc(df, "mean_trip_distance") return df def mean_test_speed_pl(df_pl,): """ Getting Mean per PULocationID """ df_pl = df_pl.groupby('PULocationID').agg(pl.col(["trip_distance",]).mean()) return df_pl def get_Queens_test_speed_pd(df_pl): """ Only getting Borough in Queens """ df_pl = df_pl.filter(pl.col("Borough")=='Queens') return df_pl def round_column(df, column,to_round): """ Round numbers on columns """ df = df.with_columns(pl.col(column).round(to_round)) return df def rename_column(df, column_old, column_new): """ Renaming columns """ df = df.rename({column_old: column_new}) return df def sort_by_columns_desc(df, column): """ Sort by column """ df = df.sort(column, descending=True) return df
保留
def loading_into_parquet(df_pl): """ Save dataframe in parquet """ df_pl.collect(streaming=True).write_parquet(f'yellow_tripdata_pl.parquet')
其余代码
import polars as pl import time def pl_read_parquet(path, ): """ Converting parquet file into Polars dataframe """ df= pl.scan_parquet(path,) return df def mean_test_speed_pl(df_pl,): """ Getting Mean per PULocationID """ df_pl = df_pl.groupby('PULocationID').agg(pl.col(["trip_distance",]).mean()) return df_pl def get_Queens_test_speed_pd(df_pl): """ Only getting Borough in Queens """ df_pl = df_pl.filter(pl.col("Borough")=='Queens') return df_pl def round_column(df, column,to_round): """ Round numbers on columns """ df = df.with_columns(pl.col(column).round(to_round)) return df def rename_column(df, column_old, column_new): """ Renaming columns """ df = df.rename({column_old: column_new}) return df def sort_by_columns_desc(df, column): """ Sort by column """ df = df.sort(column, descending=True) return df def main(): print(f'Starting ETL for Polars') start_time = time.perf_counter() print('Extracting...') df_trips, df_zone =extraction() end_extract=time.perf_counter() time_extract =end_extract- start_time print(f'Extraction Parquet end in {round(time_extract,5)} seconds') print('Transforming...') df = transformation(df_trips, df_zone) end_transform = time.perf_counter() time_transformation =time.perf_counter() - end_extract print(f'Transformation end in {round(time_transformation,5)} seconds') print('Loading...') loading_into_parquet(df,) load_transformation =time.perf_counter() - end_transform print(f'Loading end in {round(load_transformation,5)} seconds') print(f"End ETL for Polars in {str(time.perf_counter()-start_time)}") if __name__ == "__main__": main()
2、Dask
函数性能与下面一样,所以咱们把代码整合在一起:
import dask.dataframe as dd from dask.distributed import Client import time def extraction(): path1 = "yellow_tripdata/yellow_tripdata_2014-01.parquet" df_trips = dd.read_parquet(path1) path2 = "taxi+_zone_lookup.parquet" df_zone = dd.read_parquet(path2) return df_trips, df_zone def transformation(df_trips, df_zone): df_trips = mean_test_speed_dask(df_trips) df = df_trips.merge(df_zone, how="inner", left_on="PULocationID", right_on="LocationID") df = df[["Borough", "Zone", "trip_distance"]] df = get_Queens_test_speed_dask(df) df = round_column(df, "trip_distance", 2) df = rename_column(df, "trip_distance", "mean_trip_distance") df = sort_by_columns_desc(df, "mean_trip_distance") return df def loading_into_parquet(df_dask): df_dask.to_parquet("yellow_tripdata_dask.parquet", engine="fastparquet") def mean_test_speed_dask(df_dask): df_dask = df_dask.groupby("PULocationID").agg({"trip_distance": "mean"}) return df_dask def get_Queens_test_speed_dask(df_dask): df_dask = df_dask[df_dask["Borough"] == "Queens"] return df_dask def round_column(df, column, to_round): df[column] = df[column].round(to_round) return df def rename_column(df, column_old, column_new): df = df.rename(columns={column_old: column_new}) return df def sort_by_columns_desc(df, column): df = df.sort_values(column, ascending=False) return df def main(): print("Starting ETL for Dask") start_time = time.perf_counter() client = Client() # Start Dask Client df_trips, df_zone = extraction() end_extract = time.perf_counter() time_extract = end_extract - start_time print(f"Extraction Parquet end in {round(time_extract, 5)} seconds") print("Transforming...") df = transformation(df_trips, df_zone) end_transform = time.perf_counter() time_transformation = time.perf_counter() - end_extract print(f"Transformation end in {round(time_transformation, 5)} seconds") print("Loading...") loading_into_parquet(df) load_transformation = time.perf_counter() - end_transform print(f"Loading end in {round(load_transformation, 5)} seconds") print(f"End ETL for Dask in {str(time.perf_counter() - start_time)}") client.close() # Close Dask Client if __name__ == "__main__": main()
测试后果比照
1、小数据集
咱们应用164 Mb的数据集,这样大小的数据集对咱们来说比拟小,在日常中也时十分常见的。
上面是每个库运行五次的后果:
Polars
Dask
2、中等数据集
咱们应用1.1 Gb的数据集,这种类型的数据集是GB级别,尽管能够残缺的加载到内存中,然而数据体量要比小数据集大很多。
Polars
Dask
3、大数据集
咱们应用一个8gb的数据集,这样大的数据集可能一次性加载不到内存中,须要框架的解决。
Polars
Dask
总结
从后果中能够看出,Polars和Dask都能够应用惰性求值。所以读取和转换十分快,执行它们的工夫简直不随数据集大小而变动;
能够看到这两个库都十分善于解决中等规模的数据集。
因为polar和Dask都是应用惰性运行的,所以上面展现了残缺ETL的后果(均匀运行5次)。
Polars在小型数据集和中型数据集的测试中都获得了胜利。然而,Dask在大型数据集上的均匀工夫性能为26秒。
这可能和Dask的并行计算优化无关,因为官网的文档说“Dask工作的运行速度比Spark ETL查问快三倍,并且应用更少的CPU资源”。
下面是测试应用的电脑配置,Dask在计算时占用的CPU更多,能够说并行性能更好。
https://avoid.overfit.cn/post/74128cd8803b43f2a51ca4ff4fed4a95
作者:Luís Oliveira