文章和代码曾经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者公众号【AIShareLab】回复 pytorch教程 也可获取。

autograd 主动求导零碎

torch.autograd

autograd

torch.autograd.backward

torch.autograd.backward ( tensors, grad_tensors=None,retain_graph=None,create_graph=False)

性能:主动求取梯度

  • tensors : 用于求导的张量,如 loss
  • retain\_graph : 保留计算图
  • create\_graph:创立导数计算图,用于高阶求导
  • grad\_tensors :多梯度权重(用于设置权重)

留神:张量类中的backward办法,实质上是调用的torch.autogtad.backward。
    w = torch.tensor([1.], requires_grad=True)    x = torch.tensor([2.], requires_grad=True)    a = torch.add(w, x)    b = torch.add(w, 1)    y = torch.mul(a, b)    y.backward(retain_graph=True) # 能够保留梯度图    # print(w.grad)    y.backward() # 能够求两次梯度

应用grad\_tensors能够设置每个梯度的权重。

    w = torch.tensor([1.], requires_grad=True)    x = torch.tensor([2.], requires_grad=True)    a = torch.add(w, x)     # retain_grad()    b = torch.add(w, 1)    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]    grad_tensors = torch.tensor([1., 2.])    loss.backward(gradient=grad_tensors) # gradient设置权重    print(w.grad)
tensor([9.])

这个后果是由每一部分的梯度乘它对应局部的权重失去的。

torch.autograd.grad

torch.autograd.grad (outputs, inputs, grad_outputs=None,retain_graph= None, create_graph=False)

性能:求取梯度

  • outputs : 用于求导的张量,如 loss
  • inputs : 须要梯度的 张量
  • create\_graph: 创立导数计算图,用于高阶求导
  • retain\_graph : 保留计算图
  • grad\_outputs :多梯度权重
    x = torch.tensor([3.], requires_grad=True)    y = torch.pow(x, 2)     # y = x**2# grad_1 = dy/dx    grad_1 = torch.autograd.grad(y, x, create_graph=True)    print(grad_1)# grad_2 = d(dy/dx)/dx    grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True)     print(grad_2) # 求二阶导    grad_3 = torch.autograd.grad(grad_2[0], x)    print(grad_3)    print(type(grad_3))
(tensor([6.], grad_fn=<MulBackward0>),)(tensor([2.], grad_fn=<MulBackward0>),)(tensor([0.]),)<class 'tuple'>

留神:因为是元组类型,因而再次应用求导的时候须要拜访外面的内容。

1.梯度不主动清零

    w = torch.tensor([1.], requires_grad=True)    x = torch.tensor([2.], requires_grad=True)    for i in range(4):        a = torch.add(w, x)        b = torch.add(w, 1)        y = torch.mul(a, b)        y.backward()        print(w.grad)        # If not zeroed, the errors from each backpropagation add up.        # This underscore indicates in-situ operation        grad.zero_()
tensor([5.])tensor([5.])tensor([5.])tensor([5.])

2.依赖于叶子结点的结点, requires\_grad 默认为 True

    w = torch.tensor([1.], requires_grad=True)    x = torch.tensor([2.], requires_grad=True)    a = torch.add(w, x)    b = torch.add(w, 1)    y = torch.mul(a, b)# It can be seen that the attributes of the leaf nodes are all set to True    print(a.requires_grad, b.requires_grad, y.requires_grad)
True True True

3.叶子结点不可执行 in place

什么是in place?

试比拟:

a = torch.ones((1, ))print(id(a), a)a = a + torch.ones((1, ))print(id(a), a)a += torch.ones((1, ))print(id(a), a)# After executing in place, the stored address does not change
2413216666632 tensor([1.])2413216668472 tensor([2.])2413216668472 tensor([3.])

叶子节点不能执行in place,因为反向流传时会用到叶子节点张量的值,如w。而取值是依照w的地址获得,因而如果w执行inplace,则更换了w的值,导致反向流传谬误。

逻辑回归 Logistic Regression

逻辑回归是线性的二分类模型

模型表达式:

$\begin{array}{c}
y=f(W X+b)\
f(x)=\frac{1}{1+e^{-x}}
\end{array}$

f(x) 称为Sigmoid函数,也称为Logistic函数

$\text { class }=\left{\begin{array}{ll}
0, & 0.5>y \
1, & 0.5 \leq y
\end{array}\right.$

逻辑回归

$\begin{array}{c}
y=f(W X+b) \
\quad=\frac{1}{1+e^{-(W X+b)}} \
f(x)=\frac{1}{1+e^{-x}}
\end{array}$

线性回归是剖析自变量 x 与 因变量 y( 标量 ) 之间关系的办法

逻辑回归是剖析自变量 x 与 因变量 y( 概率 ) 之间关系的办法

逻辑回归也称为对数几率回归(等价)。

$\frac{y}{1-y}$示意对数几率。示意样本x为正样本的可能性。

证实等价:

$\begin{array}{l}
\ln \frac{y}{1-y}=W X+b \
\frac{y}{1-y}=e^{W X+b} \
y=e^{W X+b}-y * e^{W X+b} \
y\left(1+e^{W X+b}\right)=e^{W X+b} \
y=\frac{e^{W X+b}}{1+e^{W X+b}}=\frac{1}{1+e^{-(W X+b)}}
\end{array}$

线性回归

自变量:X
因变量:y
关系:y=+

实质就是用WX+b拟合y。

对数回归

lny=+

就是用+拟合lny。

同理,对数几率回归就是用WX+b拟合对数几率。

机器学习模型训练步骤

  • 数据采集,荡涤,划分和预处理:通过一系列的解决使它能够间接输出到模型。
  • 模型:依据工作的难度抉择简略的线性模型或者是简单的神经网络模型。
  • 损失函数:依据不同的工作抉择不同的损失函数,例如在线性回归中采纳均方差损失函数,在分类工作中能够抉择穿插熵。有了Loss就能够求梯度。
  • 失去梯度能够抉择某一种优化形式,即优化器。采纳优化器更新权值。
  • 最初再进行迭代训练过程。

逻辑回归的实现

# -*- coding: utf-8 -*-import torchimport torch.nn as nnimport matplotlib.pyplot as pltimport numpy as nptorch.manual_seed(10)# ============================ step 1/5 Generate data ============================sample_nums = 100mean_value = 1.7bias = 1n_data = torch.ones(sample_nums, 2)x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)train_x = torch.cat((x0, x1), 0)train_y = torch.cat((y0, y1), 0)# ============================ step 2/5 Select Model ============================class LR(nn.Module):    def __init__(self):        super(LR, self).__init__()        self.features = nn.Linear(2, 1)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        x = self.features(x)        x = self.sigmoid(x)        return xlr_net = LR()   # Instantiate a logistic regression model# ============================ step 3/5 Choose a loss function ============================# Select the cross-entropy function for binary classificationloss_fn = nn.BCELoss()# ============================ step 4/5 Choose an optimizer   ============================lr = 0.01  # Learning rateoptimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)# ============================ step 5/5 model training ============================for iteration in range(1000):    # forward propagation    y_pred = lr_net(train_x)    # calculate loss    loss = loss_fn(y_pred.squeeze(), train_y)    # backpropagation    loss.backward()    # update parameters    optimizer.step()    # clear gradient    optimizer.zero_grad()    # drawing    if iteration % 20 == 0:        mask = y_pred.ge(0.5).float().squeeze()  # Classify with a threshold of 0.5        correct = (mask == train_y).sum()  # Calculate the number of correctly predicted samples        acc = correct.item() / train_y.size(0)  # Calculate classification accuracy        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')        w0, w1 = lr_net.features.weight[0]        w0, w1 = float(w0.item()), float(w1.item())        plot_b = float(lr_net.features.bias[0].item())        plot_x = np.arange(-6, 6, 0.1)        plot_y = (-w0 * plot_x - plot_b) / w1        plt.xlim(-5, 7)        plt.ylim(-7, 7)        plt.plot(plot_x, plot_y)        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))        plt.legend()        plt.show()        plt.pause(0.5)        if acc > 0.99:            break

实现一个逻辑回归步骤如上。后续会缓缓解释。