栈和队列
一、对于模仿栈应用何种模型
1.程序表:尾插尾删很快,缓存利用率高,然而要扩容
2.单链表:应用链表头作为栈顶来插入删除数据也很快
3.带头双向循环链表:也能够,工夫也是O(1)
二、栈的模仿实现
//"stack.h"typedef int type;typedef struct stack{ type* a; int top; int capacity;}st;//stack.c#include"stack.h"void st_init(st* sta){ assert(sta); sta->a = NULL; sta->top = 0;//数组下标的意思,是数据下一个下标,外面没有值;top = -1,则是top指向最初一个元素 sta->capacity = 0;}void st_push(st* sta, type x){ assert(sta); if (sta->top == sta->capacity) { //满了 int newcapa = sta->capacity == 0 ? 4 : 2 * sta->capacity; type* t = realloc(sta->a, sizeof(type) * newcapa);//扩容;如果a== NULL,它的行为就和malloc一样 if (t == NULL) { printf("realloc fail\n"); exit(-1); } sta->a = t; sta->capacity = newcapa; } sta->a[sta->top] = x; ++sta->top;}void st_destroy(st* sta){ assert(sta); free(sta->a); sta->a = NULL; sta->top = 0; sta->capacity = 0;}void st_pop(st* sta){ assert(sta); assert(sta->top > 0); sta->top--;}type st_top(st* sta){ assert(sta); assert(sta->top > 0); return sta->a[sta->top - 1];}bool st_empty(st* sta){ assert(sta); return sta->top == 0;}int st_size(st* sta){ assert(sta); return sta->top; }
三、根底oj
1.无效的括号
https://leetcode.cn/problems/valid-parentheses/
给定一个只包含 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否无效。
无效字符串需满足:左括号必须用雷同类型的右括号闭合。左括号必须以正确的程序闭合。每个右括号都有一个对应的雷同类型的左括号。
思路:做括号入栈;有括号就和出栈的括号匹配
bool isValid(string s) { if(s.size()%2 != 0 )return false; stack<char>st; for(auto x:s) { if(x == '(' || x=='[' ||x=='{') st.push(x); else { if(st.empty())return false; if(st.top() == '(' && x==')') { st.pop(); continue; } else if(st.top() == '[' && x==']') { st.pop(); continue; } else if(st.top() == '{' && x=='}') { st.pop(); continue; } else return false; } } if(st.empty()) return true; return false; }
2.栈的压入、弹出序列
https://www.nowcoder.com/exam/company?tag=581)
输出两个整数序列,第一个序列示意栈的压入程序,请判断第二个序列是否可能为该栈的弹出程序。假如压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入程序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。
bool IsPopOrder(vector<int> pushV,vector<int> popV) { stack<int>st; int j = 0; for(auto x:pushV) { st.push(x); while(!st.empty() && st.top() == popV[j]) { st.pop(); ++j; } } if(st.empty()) return true; return false;}
3.用队列实现栈
https://leetcode.cn/problems/implement-stack-using-queues/
请你仅应用两个队列实现一个后入先出(LIFO)的栈,并反对一般栈的全副四种操作(push
、top
、pop
和 empty
)
typedef int type;struct queuenode{ struct queue* next; type data;};typedef struct queue{ struct queuenode* head; struct queuenode* tail;}queue;void queue_init(queue* q){ assert(q); q->head = NULL; q->tail = NULL;}void queue_destroy(queue* q){ assert(q); struct queuenode* cur = q->head; while (cur != NULL) { struct queuenode* next = cur->next; free(cur); cur = next; } q->head = q->tail = NULL;}void queue_push(queue* q, type x){ assert(q); struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode)); newnode->data = x; newnode->next = NULL; if (q->head == NULL) { q->head = q->tail = newnode; } else { q->tail->next = newnode; q->tail = newnode; }}void queue_pop(queue* q){ assert(q); assert(q->head); if (q->head == q->tail) { free(q->head); q->head = q->tail = NULL; } else { struct queuenode* next = q->head->next; free(q->head); q->head = next; }}bool queue_empty(queue* q){ assert(q); return q->head == NULL;}struct queuenode* buy_node(type x){ struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode)); newnode->data = x; newnode->next = NULL; return newnode;}type queue_back(queue* q){ assert(q); assert(q->tail); return q->tail->data;}type queue_front(queue* q){ assert(q); assert(q->head); return q->head->data;}int queue_size(queue* q){ if (q->head == NULL)return 0; if (q->head == q->tail)return 1; struct queuenode* t = q->head; int count = 0; while (t != NULL) { ++count; t = t->next; } return count;}typedef struct { queue q1; queue q2;} MyStack;MyStack* myStackCreate() { MyStack *st = (MyStack*)malloc(sizeof(MyStack)); queue_init(&st->q1); queue_init(&st->q2); return st;}void myStackPush(MyStack* obj, int x) { if(!queue_empty(&obj->q1)) { queue_push(&obj->q1, x); } else { queue_push(&obj->q2, x); }}int myStackPop(MyStack* obj) { queue* aempty = &obj->q1; queue* noempty = &obj->q2; if(!queue_empty(&obj->q1)) { aempty = &obj->q2; noempty = &obj->q1; } while(queue_size(noempty)>1) { queue_push(aempty,queue_front(noempty)); queue_pop(noempty); } int top = queue_front(noempty); queue_pop(noempty); return top;}int myStackTop(MyStack* obj) { if(!queue_empty(&obj->q1)) { return queue_back(&obj->q1); } else { return queue_back(&obj->q2); }}bool myStackEmpty(MyStack* obj) { return queue_empty(&obj->q1)&&queue_empty(&obj->q2);}void myStackFree(MyStack* obj) { queue_destroy(&obj->q1); queue_destroy(&obj->q2); free(obj);}
4.用栈实现队列
https://leetcode.cn/problems/implement-queue-using-stacks/
请你仅应用两个栈实现先入先出队列。队列该当反对个别队列反对的所有操作(push
、pop
、peek
、empty
)
typedef int type;typedef struct stack{ type* a; int top; int capacity;}st; typedef struct { st pushst; st popst;} MyQueue;void st_init(st* sta){ assert(sta); sta->a = NULL; sta->top = 0;//数组下标的意思,是数据下一个下标,外面没有值;top = -1,则是top指向最初一个元素 sta->capacity = 0;}void st_push(st* sta, type x){ assert(sta); if (sta->top == sta->capacity) { //满了 int newcapa = sta->capacity == 0 ? 4 : 2 * sta->capacity; type* t = realloc(sta->a, sizeof(type) * newcapa);//扩容;如果a== NULL,它的行为就和malloc一样 if (t == NULL) { printf("realloc fail\n"); exit(-1); } sta->a = t; sta->capacity = newcapa; } sta->a[sta->top] = x; ++sta->top;}void st_destroy(st* sta){ assert(sta); free(sta->a); sta->a = NULL; sta->top = 0; sta->capacity = 0;}void st_pop(st* sta){ assert(sta); assert(sta->top > 0); sta->top--;}type st_top(st* sta){ assert(sta); assert(sta->top > 0); return sta->a[sta->top - 1];}bool st_empty(st* sta){ assert(sta); return sta->top == 0;}int st_size(st* sta){ assert(sta); return sta->top; }MyQueue* myQueueCreate() { MyQueue * q = (MyQueue*)malloc(sizeof(MyQueue)); st_init(&q->popst); st_init(&q->pushst); return q;}void myQueuePush(MyQueue* obj, int x) { st_push(&obj->pushst, x);}int myQueuePop(MyQueue* obj) { if(st_empty(&obj->popst)) { while(!st_empty(&obj->pushst)) { st_push(&obj->popst, st_top(&obj->pushst)); st_pop(&obj->pushst); } } type x = st_top(&obj->popst); st_pop(&obj->popst); return x;}int myQueuePeek(MyQueue* obj) { if(st_empty(&obj->popst)) { while(!st_empty(&obj->pushst)) { st_push(&obj->popst,st_top(&obj->pushst)); st_pop(&obj->pushst); } } return st_top(&obj->popst);}bool myQueueEmpty(MyQueue* obj) { return st_empty(&obj->pushst) && st_empty(&obj->popst);}void myQueueFree(MyQueue* obj) { st_destroy(&obj->popst); st_destroy(&obj->pushst); free(obj);}
5.设计循环队列
https://leetcode.cn/problems/design-circular-queue/
设计你的循环队列实现。 循环队列是一种线性数据结构,其操作体现基于 FIFO(先进先出)准则并且队尾被连贯在队首之后以造成一个循环。它也被称为“环形缓冲器”。
循环队列的一个益处是咱们能够利用这个队列之前用过的空间。在一个一般队列里,一旦一个队列满了,咱们就不能插入下一个元素,即便在队列后面仍有空间。然而应用循环队列,咱们能应用这些空间去存储新的值。
思路:无论是链表还是数组模仿,都须要空一个格子,来代表曾经满了的状况。head和tail在同一地位时,代表队列为空。tail的下一个地位是head代表队列曾经满了。要存x个数据,就须要x+1的空间。
#include<stdbool.h>typedef struct { int*a; int head; int tail; int k;} MyCircularQueue;MyCircularQueue* myCircularQueueCreate(int k) { MyCircularQueue* q = (MyCircularQueue*)malloc(sizeof(MyCircularQueue)); q->a = (int *)malloc(sizeof(int)* (k + 1)); q->head = q->tail = 0; q->k = k; return q;}bool myCircularQueueIsEmpty(MyCircularQueue* obj) { return obj->head == obj->tail;}bool myCircularQueueIsFull(MyCircularQueue* obj) { return (obj->tail + 1)%(obj->k +1) == obj->head;}bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {//在队列中加数据 if(myCircularQueueIsFull(obj)) return false; obj->a[obj->tail] = value; obj->tail = (obj->tail + 1)%(obj->k + 1); return true;}bool myCircularQueueDeQueue(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return false; obj->head = (obj->head + 1)%(obj->k + 1); return true;}int myCircularQueueFront(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return -1; return obj->a[obj->head];}int myCircularQueueRear(MyCircularQueue* obj) { if(myCircularQueueIsEmpty(obj)) return -1; return obj->a[(obj->tail + obj-> k)%(obj->k + 1)];//留神这里,(tail - 1 + k + 1)%(k + 1),因为tail-1会小于0,所以须要加上数组长度} void myCircularQueueFree(MyCircularQueue* obj) { free(obj->a); free(obj);}
四、模仿队列应用的模型
如果应用数组的话,须要在数组头插入删除数据,效率低。所以这里应用单链表实现,并且保护它的尾指针。将队列的头指针和尾指针放入构造体,这样的话批改它们的时候就不须要传二级指针了,而只须要构造体的一级指针。
五、模仿实现队列
//queue.htypedef int type;struct queuenode{ struct queue* next; type data;};//将指针放在一个构造体中,这样批改他们时就不须要二级指针,而是只须要构造体的一级指针就能够了typedef struct queue{ struct queuenode* head; struct queuenode* tail;}queue;//queue.c#define _CRT_SECURE_NO_WARNINGS 1 #include"queue.h"void queue_init(queue* q){ assert(q); q->head = NULL; q->tail = NULL;}void queue_destroy(queue* q){ assert(q); struct queuenode* cur = q->head; while (cur != NULL) { struct queuenode* next = cur->next; free(cur); cur = next; } q->head = q->tail = NULL;}void queue_push(queue* q, type x){ assert(q); struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode)); newnode->data = x; newnode->next = NULL; if (q->head == NULL) { q->head = q->tail = newnode; } else { q->tail->next = newnode; q->tail = newnode; }}void queue_pop(queue* q){ assert(q); assert(q->head); if (q->head == q->tail) { free(q->head); q->head = q->tail = NULL; } else { struct queuenode* next = q->head->next; free(q->head); q->head = next; }}bool queue_empty(queue* q){ assert(q); return q->head == NULL;}struct queuenode* buy_node(type x){ struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode)); newnode->data = x; newnode->next = NULL; return newnode;}type queue_back(queue* q){ assert(q); assert(q->tail); return q->tail->data;}type queue_front(queue* q){ assert(q); assert(q->head); return q->head->data;}int queue_size(queue* q){ if (q->head == NULL)return 0; if (q->head == q->tail)return 1; struct queuenode* t = q->head; int count = 0; while (t != NULL) { ++count; t = t->next; } return count;}