我的项目介绍
垃圾识别系统,应用Python作为次要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对5种垃圾数据集进行训练,最初失去一个辨认精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张垃圾图片辨认其名称。
成果展现
演示视频
我的项目源码和视频演示:https://www.yuque.com/ziwu/yygu3z/lwutss28pac54l3n
相干代码
def upload_img(request): # 图片上传 file = request.FILES.get('file') file_name = file.name file_name = '{}.{}'.format(int(time.time()), str(file_name).rsplit('.')[-1]) with open(os.path.join(settings.MEDIA_ROOT, file_name), 'wb') as f: for chunk in file.chunks(): f.write(chunk) upload_url = request.build_absolute_uri(settings.MEDIA_URL + file_name) ImageCheck.objects.create(file_name=file_name, file_url=upload_url) return JsonResponse({'code': 200, 'data': {'url': upload_url}})def check_img(request): # 图片检测 image_url = request.POST.get('img_url') if not image_url: return JsonResponse({'code': 400, 'message': '短少必传的参数'}) image_name = image_url.rsplit('/')[-1] image_path = os.path.join(settings.MEDIA_ROOT, image_name) pred_name = check_handle(image_path) obj = ImageCheck.objects.filter(file_name=image_name).last() obj.check_result = pred_name obj.save() return JsonResponse({'code': 200, 'data': {'pred_name': pred_name}})
实现步骤
● 首先收集须要辨认的品种数据集
● 而后基于TensorFlow搭建ResNet50卷积神经网络算法模型,并通过多轮迭代训练,最终失去一个精度较高的模型,并将其保留为h5格局的本地文件。
● 基于Django开发网页端可视化操作平台,HTML、CSS、BootStrap等技术搭建前端界面。Django作为后端逻辑解决框架。Ajax实现前后端的数据通信。