1. 加一

给定一个由 整数 组成的 非空 数组所示意的非负整数,在该数的根底上加一。

最高位数字寄存在数组的首位, 数组中每个元素只存储单个数字。

你能够假如除了整数 0 之外,这个整数不会以零结尾。

示例 1:

输出:digits = [1,2,3]
输入:[1,2,4]
解释:输出数组示意数字 123。

示例 2:

输出:digits = [4,3,2,1]
输入:[4,3,2,2]
解释:输出数组示意数字 4321。
/** * @param {number[]} digits * @return {number[]} */var plusOne = function(digits) {    // 我的想法是在解决数组之前就判断数组是不是全副是9,如果全副是9,在加完1后,须要在首位拼一个1作为进位。    let flag = true;    digits.forEach(v => {        if(flag){            if(v !== 9){                flag = false;             }        }    })    // 从后往前遍历    for(i = digits.length - 1; i => 0;i--){        if(digits[i] === 9){            digits[i] = 0        }else{            // 当不为9时,加一后就完结循环。            digits[i]++;            break;        }    }    //如果全副是9如,[9],[9,9]解决后会变成[0],[0,0]。须要拼接一个[1]    if(flag){        return [1].concat(digits)    }    return digits;};

2.二进制求和

给你两个二进制字符串,返回它们的和(用二进制示意)。

输出为 非空 字符串且只蕴含数字 1 和 0。

示例 1:

输出: a = "11", b = "1"
输入: "100"
/** * @param {string} a * @param {string} b * @return {string} */var addBinary = function(a, b) {    let arrA = a.split('')    let arrB = b.split('')    let len = arrA.length < arrB.length ? arrB.length : arrA.length    let c = 0    let result = ''    for(let i = len - 1; i >= 0 || c > 0; i--) {                let curA = arrA.pop()        let curB = arrB.pop()        if(curA) {            c += parseInt(curA)        }        if(curB) {            c += parseInt(curB)        }        result = (c % 2) + result        c = c > 1 ? 1 : 0    }    return result};

3. x 的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

因为返回类型是整数,后果只保留 整数局部 ,小数局部将被 舍去 。

留神:不容许应用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

例 1:

输出:x = 4
输入:2

示例 2:

输出:x = 8
输入:2
解释:8 的算术平方根是 2.82842..., 因为返回类型是整数,小数局部将被舍去。
/** * @param {number} x * @return {number} */var mySqrt = function(x) {  // 第一种办法,从0开始循环,当平方大于x,那就是此时循环的值减去1.  // let res = 0;  // if(x < 2){  //     return x  // }  // if(x === 2){  //     return 1  // }  // for(let i = 0;i<x;i++){  //     if(i*i>x){  //         res = i;  //         break  //     }  // }  // return res - 1;  // 第二种办法,二分法,每次循环从新计算两头地位,一直放大范畴  let left = 0;  let right = x;  let mid;  while(left <= right){    mid = Math.ceil((left+right)/2);    if(mid*mid === x){      return mid;    }else if(mid*mid < x){      left = mid + 1;    }else{      right = mid -1;    }  }  return right};