目录
- 理解需要
- 计划 1:数据库轮询
- 计划 2:JDK 的提早队列
- 计划 3:工夫轮算法
- 计划 4:redis 缓存
- 计划 5:应用音讯队列
理解需要
在开发中,往往会遇到一些对于延时工作的需要。最全面的Java面试网站
例如
- 生成订单 30 分钟未领取,则主动勾销
- 生成订单 60 秒后,给用户发短信
对上述的工作,咱们给一个业余的名字来形容,那就是延时工作。那么这里就会产生一个问题,这个延时工作和定时工作的区别到底在哪里呢?一共有如下几点区别
定时工作有明确的触发工夫,延时工作没有
定时工作有执行周期,而延时工作在某事件触发后一段时间内执行,没有执行周期
定时工作个别执行的是批处理操作是多个工作,而延时工作个别是单个工作
上面,咱们以判断订单是否超时为例,进行计划剖析
本文曾经收录到Github仓库,该仓库蕴含计算机根底、Java根底、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等外围知识点,欢送star~
Github地址
如果拜访不了Github,能够拜访gitee地址。
gitee地址
计划 1:数据库轮询
思路
该计划通常是在小型我的项目中应用,即通过一个线程定时的去扫描数据库,通过订单工夫来判断是否有超时的订单,而后进行 update 或 delete 等操作
实现
能够用 quartz 来实现的,简略介绍一下
maven 我的项目引入一个依赖如下所示
<dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> <version>2.2.2</version></dependency>
调用 Demo 类 MyJob 如下所示
package com.rjzheng.delay1;import org.quartz.*;import org.quartz.impl.StdSchedulerFactory;public class MyJob implements Job { public void execute(JobExecutionContext context) throws JobExecutionException { System.out.println("要去数据库扫描啦。。。"); } public static void main(String[] args) throws Exception { // 创立工作 JobDetail jobDetail = JobBuilder.newJob(MyJob.class) .withIdentity("job1", "group1").build(); // 创立触发器 每3秒钟执行一次 Trigger trigger = TriggerBuilder .newTrigger() .withIdentity("trigger1", "group3") .withSchedule( SimpleScheduleBuilder .simpleSchedule() .withIntervalInSeconds(3). repeatForever()) .build(); Scheduler scheduler = new StdSchedulerFactory().getScheduler(); // 将工作及其触发器放入调度器 scheduler.scheduleJob(jobDetail, trigger); // 调度器开始调度工作 scheduler.start(); }}
运行代码,可发现每隔 3 秒,输入如下
要去数据库扫描啦。。。
长处
简单易行,反对集群操作
给大家分享一个Github仓库,下面有大彬整顿的300多本经典的计算机书籍PDF,包含C语言、C++、Java、Python、前端、数据库、操作系统、计算机网络、数据结构和算法、机器学习、编程人生等,能够star一下,下次找书间接在下面搜寻,仓库继续更新中~
Github地址
毛病
- 对服务器内存耗费大
- 存在提早,比方你每隔 3 分钟扫描一次,那最坏的延迟时间就是 3 分钟
- 假如你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大
计划 2:JDK 的提早队列
思路
该计划是利用 JDK 自带的 DelayQueue 来实现,这是一个无界阻塞队列,该队列只有在提早期满的时候能力从中获取元素,放入 DelayQueue 中的对象,是必须实现 Delayed 接口的。
DelayedQueue 实现工作流程如下图所示
其中 Poll():获取并移除队列的超时元素,没有则返回空
take():获取并移除队列的超时元素,如果没有则 wait 以后线程,直到有元素满足超时条件,返回后果。
实现
定义一个类 OrderDelay 实现 Delayed,代码如下
package com.rjzheng.delay2;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class OrderDelay implements Delayed { private String orderId; private long timeout; OrderDelay(String orderId, long timeout) { this.orderId = orderId; this.timeout = timeout + System.nanoTime(); } public int compareTo(Delayed other) { if (other == this) { return 0; } OrderDelay t = (OrderDelay) other; long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); } // 返回间隔你自定义的超时工夫还有多少 public long getDelay(TimeUnit unit) { return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS); } void print() { System.out.println(orderId + "编号的订单要删除啦。。。。"); }}
运行的测试 Demo 为,咱们设定延迟时间为 3 秒
package com.rjzheng.delay2;import java.util.ArrayList;import java.util.List;import java.util.concurrent.DelayQueue;import java.util.concurrent.TimeUnit;public class DelayQueueDemo { public static void main(String[] args) { List<String> list = new ArrayList<String>(); list.add("00000001"); list.add("00000002"); list.add("00000003"); list.add("00000004"); list.add("00000005"); DelayQueue<OrderDelay> queue = newDelayQueue < OrderDelay > (); long start = System.currentTimeMillis(); for (int i = 0; i < 5; i++) { //提早三秒取出 queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS))); try { queue.take().print(); System.out.println("After " + (System.currentTimeMillis() - start) + " MilliSeconds"); } catch (InterruptedException e) { e.printStackTrace(); } } }}
输入如下
00000001编号的订单要删除啦。。。。After 3003 MilliSeconds00000002编号的订单要删除啦。。。。After 6006 MilliSeconds00000003编号的订单要删除啦。。。。After 9006 MilliSeconds00000004编号的订单要删除啦。。。。After 12008 MilliSeconds00000005编号的订单要删除啦。。。。After 15009 MilliSeconds
能够看到都是提早 3 秒,订单被删除
长处
效率高,工作触发时间延迟低。
毛病
- 服务器重启后,数据全副隐没,怕宕机
- 集群扩大相当麻烦
- 因为内存条件限度的起因,比方下单未付款的订单数太多,那么很容易就呈现 OOM 异样
- 代码复杂度较高
计划 3:工夫轮算法
思路
先上一张工夫轮的图(这图到处都是啦)
工夫轮算法能够类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样能够看出定时轮由个 3 个重要的属性参数,ticksPerWheel(一轮的 tick 数),tickDuration(一个 tick 的持续时间)以及 timeUnit(工夫单位),例如当 ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和事实中的始终的秒针走动齐全相似了。
如果以后指针指在 1 下面,我有一个工作须要 4 秒当前执行,那么这个执行的线程回调或者音讯将会被放在 5 上。那如果须要在 20 秒之后执行怎么办,因为这个环形构造槽数只到 8,如果要 20 秒,指针须要多转 2 圈。地位是在 2 圈之后的 5 下面(20 % 8 + 1)
实现
咱们用 Netty 的 HashedWheelTimer 来实现
给 Pom 加上上面的依赖
<dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.1.24.Final</version></dependency>
测试代码 HashedWheelTimerTest 如下所示
package com.rjzheng.delay3;import io.netty.util.HashedWheelTimer;import io.netty.util.Timeout;import io.netty.util.Timer;import io.netty.util.TimerTask;import java.util.concurrent.TimeUnit;public class HashedWheelTimerTest { static class MyTimerTask implements TimerTask { boolean flag; public MyTimerTask(boolean flag) { this.flag = flag; } public void run(Timeout timeout) throws Exception { System.out.println("要去数据库删除订单了。。。。"); this.flag = false; } } public static void main(String[] argv) { MyTimerTask timerTask = new MyTimerTask(true); Timer timer = new HashedWheelTimer(); timer.newTimeout(timerTask, 5, TimeUnit.SECONDS); int i = 1; while (timerTask.flag) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(i + "秒过来了"); i++; } }}
输入如下
1秒过来了2秒过来了3秒过来了4秒过来了5秒过来了要去数据库删除订单了。。。。6秒过来了
长处
效率高,工作触发时间延迟工夫比 delayQueue 低,代码复杂度比 delayQueue 低。
毛病
- 服务器重启后,数据全副隐没,怕宕机
- 集群扩大相当麻烦
- 因为内存条件限度的起因,比方下单未付款的订单数太多,那么很容易就呈现 OOM 异样
计划 4:redis 缓存
思路一
利用 redis 的 zset,zset 是一个有序汇合,每一个元素(member)都关联了一个 score,通过 score 排序来取汇合中的值
增加元素:ZADD key score member [score member …]
按程序查问元素:ZRANGE key start stop [WITHSCORES]
查问元素 score:ZSCORE key member
移除元素:ZREM key member [member …]
测试如下
增加单个元素redis> ZADD page_rank 10 google.com(integer) 1增加多个元素redis> ZADD page_rank 9 baidu.com 8 bing.com(integer) 2redis> ZRANGE page_rank 0 -1 WITHSCORES1) "bing.com"2) "8"3) "baidu.com"4) "9"5) "google.com"6) "10"查问元素的score值redis> ZSCORE page_rank bing.com"8"移除单个元素redis> ZREM page_rank google.com(integer) 1redis> ZRANGE page_rank 0 -1 WITHSCORES1) "bing.com"2) "8"3) "baidu.com"4) "9"
那么如何实现呢?咱们将订单超时工夫戳与订单号别离设置为 score 和 member,零碎扫描第一个元素判断是否超时,具体如下图所示
实现一
package com.rjzheng.delay4;import redis.clients.jedis.Jedis;import redis.clients.jedis.JedisPool;import redis.clients.jedis.Tuple;import java.util.Calendar;import java.util.Set;public class AppTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedisPool = new JedisPool(ADDR, PORT); public static Jedis getJedis() { return jedisPool.getResource(); } //生产者,生成5个订单放进去 public void productionDelayMessage() { for (int i = 0; i < 5; i++) { //提早3秒 Calendar cal1 = Calendar.getInstance(); cal1.add(Calendar.SECOND, 3); int second3later = (int) (cal1.getTimeInMillis() / 1000); AppTest.getJedis().zadd("OrderId", second3later, "OID0000001" + i); System.out.println(System.currentTimeMillis() + "ms:redis生成了一个订单工作:订单ID为" + "OID0000001" + i); } } //消费者,取订单 public void consumerDelayMessage() { Jedis jedis = AppTest.getJedis(); while (true) { Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1); if (items == null || items.isEmpty()) { System.out.println("以后没有期待的工作"); try { Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } continue; } int score = (int) ((Tuple) items.toArray()[0]).getScore(); Calendar cal = Calendar.getInstance(); int nowSecond = (int) (cal.getTimeInMillis() / 1000); if (nowSecond >= score) { String orderId = ((Tuple) items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis() + "ms:redis生产了一个工作:生产的订单OrderId为" + orderId); } } } public static void main(String[] args) { AppTest appTest = new AppTest(); appTest.productionDelayMessage(); appTest.consumerDelayMessage(); }}
此时对应输入如下
能够看到,简直都是 3 秒之后,生产订单。
然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,咱们上测试代码 ThreadTest
package com.rjzheng.delay4;import java.util.concurrent.CountDownLatch;public class ThreadTest { private static final int threadNum = 10; private static CountDownLatch cdl = newCountDownLatch(threadNum); static class DelayMessage implements Runnable { public void run() { try { cdl.await(); } catch (InterruptedException e) { e.printStackTrace(); } AppTest appTest = new AppTest(); appTest.consumerDelayMessage(); } } public static void main(String[] args) { AppTest appTest = new AppTest(); appTest.productionDelayMessage(); for (int i = 0; i < threadNum; i++) { new Thread(new DelayMessage()).start(); cdl.countDown(); } }}
输入如下所示
显然,呈现了多个线程生产同一个资源的状况。
解决方案
(1)用分布式锁,然而用分布式锁,性能降落了,该计划不细说。
(2)对 ZREM 的返回值进行判断,只有大于 0 的时候,才生产数据,于是将 consumerDelayMessage()办法里的
if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis()+"ms:redis生产了一个工作:生产的订单OrderId为"+orderId);}
批改为
if (nowSecond >= score) { String orderId = ((Tuple) items.toArray()[0]).getElement(); Long num = jedis.zrem("OrderId", orderId); if (num != null && num > 0) { System.out.println(System.currentTimeMillis() + "ms:redis生产了一个工作:生产的订单OrderId为" + orderId); }}
在这种批改后,从新运行 ThreadTest 类,发现输入失常了
思路二
该计划应用 redis 的 Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制能够在 key 生效之后,提供一个回调,实际上是 redis 会给客户端发送一个音讯。是须要 redis 版本 2.8 以上。
实现二
在 redis.conf 中,退出一条配置
notify-keyspace-events Ex
运行代码如下
package com.rjzheng.delay5;import redis.clients.jedis.JedisPool;import redis.clients.jedis.JedisPubSub;public class RedisTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedis = new JedisPool(ADDR, PORT); private static RedisSub sub = new RedisSub(); public static void init() { new Thread(new Runnable() { public void run() { jedis.getResource().subscribe(sub, "__keyevent@0__:expired"); } }).start(); } public static void main(String[] args) throws InterruptedException { init(); for (int i = 0; i < 10; i++) { String orderId = "OID000000" + i; jedis.getResource().setex(orderId, 3, orderId); System.out.println(System.currentTimeMillis() + "ms:" + orderId + "订单生成"); } } static class RedisSub extends JedisPubSub { @Override public void onMessage(String channel, String message) { System.out.println(System.currentTimeMillis() + "ms:" + message + "订单勾销"); } }}
输入如下
能够显著看到 3 秒过后,订单勾销了
ps:redis 的 pub/sub 机制存在一个硬伤,官网内容如下
原:Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.
翻: Redis 的公布/订阅目前是即发即弃(fire and forget)模式的,因而无奈实现事件的牢靠告诉。也就是说,如果公布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都失落了。因而,计划二不是太举荐。当然,如果你对可靠性要求不高,能够应用。
长处
(1) 因为应用 Redis 作为音讯通道,音讯都存储在 Redis 中。如果发送程序或者工作处理程序挂了,重启之后,还有重新处理数据的可能性。
(2) 做集群扩大相当不便
(3) 工夫准确度高
毛病
须要额定进行 redis 保护
计划 5:应用音讯队列
思路
咱们能够采纳 rabbitMQ 的延时队列。RabbitMQ 具备以下两个个性,能够实现提早队列
RabbitMQ 能够针对 Queue 和 Message 设置 x-message-tt,来管制音讯的生存工夫,如果超时,则音讯变为 dead letter
lRabbitMQ 的 Queue 能够配置 x-dead-letter-exchange 和 x-dead-letter-routing-key(可选)两个参数,用来管制队列内呈现了 deadletter,则依照这两个参数从新路由。联合以上两个个性,就能够模拟出提早音讯的性能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。
长处
高效,能够利用 rabbitmq 的分布式个性轻易的进行横向扩大,音讯反对长久化减少了可靠性。
毛病
自身的易用度要依赖于 rabbitMq 的运维.因为要援用 rabbitMq,所以复杂度和老本变高。
--end--
最初给大家分享一个Github仓库,下面有大彬整顿的300多本经典的计算机书籍PDF,包含C语言、C++、Java、Python、前端、数据库、操作系统、计算机网络、数据结构和算法、机器学习、编程人生等,能够star一下,下次找书间接在下面搜寻,仓库继续更新中~
Github地址:https://github.com/Tyson0314/java-books