kubernetes delta_fifo源码解析
1.介绍
kubernetes delta_fifo是一个先入先出队列,相较于fifo,有两点不同:
• 与key相关联的不间接是obj,而是Deltas,它是一个切片,Delta不仅蕴含了obj,还蕴含了DeltaType
• 当Deltas最初一个元素Delta.DeltaType曾经是Deleted类型时,再增加一个Deleted类型的Delta,Deltas不再新增 delta_fifo的API与fifo类型,不再具体分析
2.应用
参考TestDeltaFIFO_ReplaceMakesDeletions[1] `
go // 取testFifoObject中name作为key func testFifoObjectKeyFunc(obj interface{}) (string, error) { return obj.(testFifoObject).name, nil }
type testFifoObject struct { name string val interface{} }
func mkFifoObj(name string, val interface{}) testFifoObject { return testFifoObject{name: name, val: val} }
// literalListerGetter实现了KeyListerGetter接口 type literalListerGetter func() []testFifoObject
var _ KeyListerGetter = literalListerGetter(nil)
func (kl literalListerGetter) ListKeys() []string { result := []string{} for _, fifoObj := range kl() { result = append(result, fifoObj.name) } return result }
func (kl literalListerGetter) GetByKey(key string) (interface{}, bool, error) { for _, v := range kl() { if v.name == key { return v, true, nil } } return nil, false, nil }
func TestDeltaFIFO_ReplaceMakesDeletions(t *testing.T) { f := NewDeltaFIFOWithOptions(DeltaFIFOOptions{ KeyFunction: testFifoObjectKeyFunc, KnownObjects: literalListerGetter(func() []testFifoObject { return []testFifoObject{mkFifoObj("foo", 5), mkFifoObj("bar", 6), mkFifoObj("baz", 7)} }), }) // 删除 f.Delete(mkFifoObj("baz", 10)) // 替换,f.emitDeltaTypeReplaced为false时action为Sync,否则action为Replace f.Replace([]interface{}{mkFifoObj("foo", 5)}, "0") // 冀望的列表 expectedList := []Deltas{ {{Deleted, mkFifoObj("baz", 10)}}, {{Sync, mkFifoObj("foo", 5)}}, {{Deleted, DeletedFinalStateUnknown{Key: "bar", Obj: mkFifoObj("bar", 6)}}}, }
for _, expected := range expectedList {
cur := Pop(f).(Deltas)if e, a := expected, cur; !reflect.DeepEqual(e, a) { t.Errorf("Expected %#v, got %#v", e, a)}
}
f = NewDeltaFIFOWithOptions(DeltaFIFOOptions{
KeyFunction: testFifoObjectKeyFunc,
KnownObjects: literalListerGetter(func() []testFifoObject {
return []testFifoObject{mkFifoObj("foo", 5), mkFifoObj("bar", 6), mkFifoObj("baz", 7)}}),
})
f.Add(mkFifoObj("baz", 10))
f.Replace([]interface{}{mkFifoObj("foo", 5)}, "0")
expectedList = []Deltas{
{{Added, mkFifoObj("baz", 10)},{Deleted, DeletedFinalStateUnknown{Key: "baz", Obj: mkFifoObj("baz", 7)}}},{{Sync, mkFifoObj("foo", 5)}},{{Deleted, DeletedFinalStateUnknown{Key: "bar", Obj: mkFifoObj("bar", 6)}}},
}
for _, expected := range expectedList {
cur := Pop(f).(Deltas)if e, a := expected, cur; !reflect.DeepEqual(e, a) { t.Errorf("Expected %#v, got %#v", e, a)}
}
f = NewDeltaFIFOWithOptions(DeltaFIFOOptions{KeyFunction: testFifoObjectKeyFunc})
f.Add(mkFifoObj("baz", 10))
f.Replace([]interface{}{mkFifoObj("foo", 5)}, "0")
expectedList = []Deltas{
{{Added, mkFifoObj("baz", 10)},{Deleted, DeletedFinalStateUnknown{Key: "baz", Obj: mkFifoObj("baz", 10)}}},{{Sync, mkFifoObj("foo", 5)}},
}
for _, expected := range expectedList {
cur := Pop(f).(Deltas)if e, a := expected, cur; !reflect.DeepEqual(e, a) { t.Errorf("Expected %#v, got %#v", e, a)}
}
}
3.源码解析
func NewDeltaFIFOWithOptions(opts DeltaFIFOOptions) *DeltaFIFO { if opts.KeyFunction == nil { opts.KeyFunction = MetaNamespaceKeyFunc } f := &DeltaFIFO{ items: map[string]Deltas{}, queue: []string{}, keyFunc: opts.KeyFunction, knownObjects: opts.KnownObjects, emitDeltaTypeReplaced: opts.EmitDeltaTypeReplaced, } f.cond.L = &f.lock return f}// 计算obj对应的keyfunc (f *DeltaFIFO) KeyOf(obj interface{}) (string, error) { // 如果obj为Deltas类型 if d, ok := obj.(Deltas); ok { // 如果没有值,抛err if len(d) == 0 { return "", KeyError{obj, ErrZeroLengthDeltasObject} } // 取最新的obj obj = d.Newest().Object } // 如果obj为DeletedFinalStateUnknown类型,则间接返回DeletedFinalStateUnknown.Key if d, ok := obj.(DeletedFinalStateUnknown); ok { return d.Key, nil } // 否则,应用keyFunc return f.keyFunc(obj)}func (d Deltas) Newest() *Delta { if n := len(d); n > 0 { return &d[n-1] } return nil}// Delete办法增加Deleted类型的Delta,如果f.knownObjects为nil并且obj不存在时,不做解决;如果f.knownObjects不为nil,且f.knownObjects.GetByKey(id)不存在并且f.items[id]不存在,不做解决func (f *DeltaFIFO) Delete(obj interface{}) error { // 计算obj对应的key id, err := f.KeyOf(obj) if err != nil { return KeyError{obj, err} } f.lock.Lock() defer f.lock.Unlock() f.populated = true if f.knownObjects == nil { // 如果f.items不存在则不解决 if _, exists := f.items[id]; !exists { return nil } } else { _, exists, err := f.knownObjects.GetByKey(id) _, itemsExist := f.items[id] // 如果f.knownObjects.GetByKey(id)和f.items[id]都不存在,则不解决 if err == nil && !exists && !itemsExist { return nil } } // Deleted类型入队 return f.queueActionLocked(Deleted, obj)}func (f *DeltaFIFO) queueActionLocked(actionType DeltaType, obj interface{}) error { // 计算obj对应的key id, err := f.KeyOf(obj) if err != nil { return KeyError{obj, err} } oldDeltas := f.items[id] newDeltas := append(oldDeltas, Delta{actionType, obj}) // delete类型是否反复了 newDeltas = dedupDeltas(newDeltas) if len(newDeltas) > 0 { if _, exists := f.items[id]; !exists { f.queue = append(f.queue, id) } f.items[id] = newDeltas f.cond.Broadcast() } else { // 失常状况,不应该走到这个分支 if oldDeltas == nil { klog.Errorf("Impossible dedupDeltas for id=%q: oldDeltas=%#+v, obj=%#+v; ignoring", id, oldDeltas, obj) return nil } klog.Errorf("Impossible dedupDeltas for id=%q: oldDeltas=%#+v, obj=%#+v; breaking invariant by storing empty Deltas", id, oldDeltas, obj) f.items[id] = newDeltas return fmt.Errorf("Impossible dedupDeltas for id=%q: oldDeltas=%#+v, obj=%#+v; broke DeltaFIFO invariant by storing empty Deltas", id, oldDeltas, obj) } return nil}func dedupDeltas(deltas Deltas) Deltas { n := len(deltas) if n < 2 { return deltas } a := &deltas[n-1] b := &deltas[n-2] if out := isDup(a, b); out != nil { deltas[n-2] = *out return deltas[:n-1] } return deltas}func isDup(a, b *Delta) *Delta { // 是否删除类型反复 if out := isDeletionDup(a, b); out != nil { return out } return nil}func isDeletionDup(a, b *Delta) *Delta { if b.Type != Deleted || a.Type != Deleted { return nil } // 都为delete类型,并且b.Object是DeletedFinalStateUnknown类型,则保留a,否则保留b if _, ok := b.Object.(DeletedFinalStateUnknown); ok { return a } return b}// Replace逻辑如下: (1) 增加Sync或Replace Delta类型对象// (2) 删除操作:对于每个曾经存在的keys,但不存在于list中的对象,增加Delete(DeletedFinalStateUnknown{K, O})对象,其中O是K关联的对象;// 如果f.knownObjects为空, 曾经存在的keys是f.items,O是K关联的Deltas.Newest();// 如果f.knownObjects不为空,曾经存在的keys是f.knownObjects,O是f.knownObjects.GetByKey(K)的返回值func (f *DeltaFIFO) Replace(list []interface{}, _ string) error { f.lock.Lock() defer f.lock.Unlock() keys := make(sets.String, len(list)) // 兼容老版本的客户端 action := Sync if f.emitDeltaTypeReplaced { action = Replaced } for _, item := range list { key, err := f.KeyOf(item) if err != nil { return KeyError{item, err} } keys.Insert(key) // 每个list中的item增加Sync/Replaced类型 if err := f.queueActionLocked(action, item); err != nil { return fmt.Errorf("couldn't enqueue object: %v", err) } } if f.knownObjects == nil { // Do deletion detection against our own list. queuedDeletions := 0 for k, oldItem := range f.items { if keys.Has(k) { continue } var deletedObj interface{} // 取最新的一个obj if n := oldItem.Newest(); n != nil { deletedObj = n.Object } queuedDeletions++ if err := f.queueActionLocked(Deleted, DeletedFinalStateUnknown{k, deletedObj}); err != nil { return err } } if !f.populated { f.populated = true f.initialPopulationCount = keys.Len() + queuedDeletions } return nil } knownKeys := f.knownObjects.ListKeys() queuedDeletions := 0 for _, k := range knownKeys { if keys.Has(k) { continue } // 取f.knownObjects.GetByKey的返回值 deletedObj, exists, err := f.knownObjects.GetByKey(k) if err != nil { deletedObj = nil klog.Errorf("Unexpected error %v during lookup of key %v, placing DeleteFinalStateUnknown marker without object", err, k) } else if !exists { deletedObj = nil klog.Infof("Key %v does not exist in known objects store, placing DeleteFinalStateUnknown marker without object", k) } queuedDeletions++ if err := f.queueActionLocked(Deleted, DeletedFinalStateUnknown{k, deletedObj}); err != nil { return err } } if !f.populated { f.populated = true f.initialPopulationCount = keys.Len() + queuedDeletions } return nil}// Add 增加一个Added类型的objfunc (f *DeltaFIFO) Add(obj interface{}) error { f.lock.Lock() defer f.lock.Unlock() f.populated = true return f.queueActionLocked(Added, obj)}// Pop按added/updated程序返回一个Deltas,如果队列为空则阻塞func (f *DeltaFIFO) Pop(process PopProcessFunc) (interface{}, error) { f.lock.Lock() defer f.lock.Unlock() for { for len(f.queue) == 0 { // 当队列为空时,除了入队以外,也能够调用Close()退出循环 if f.closed { return nil, ErrFIFOClosed } f.cond.Wait() } // 取队头元素,先入先出 id := f.queue[0] f.queue = f.queue[1:] depth := len(f.queue) if f.initialPopulationCount > 0 { f.initialPopulationCount-- } item, ok := f.items[id] if !ok { // 不应该不存在f.items中 klog.Errorf("Inconceivable! %q was in f.queue but not f.items; ignoring.", id) continue } delete(f.items, id) // 当队列深度大于10的时候,关上trace日志 if depth > 10 { trace := utiltrace.New("DeltaFIFO Pop Process", utiltrace.Field{Key: "ID", Value: id}, utiltrace.Field{Key: "Depth", Value: depth}, utiltrace.Field{Key: "Reason", Value: "slow event handlers blocking the queue"}) defer trace.LogIfLong(100 * time.Millisecond) } // 调用PopProcessFunc函数解决item,返回ErrRequeue时,重入队 err := process(item) if e, ok := err.(ErrRequeue); ok { f.addIfNotPresent(id, item) err = e.Err } // 间接返回item,不进行深拷贝,将item的所有权转移给调用者 return item, err }}4.总结kubernetes delta_fifo在实现先入先出队列思路上与kubernetes fifo相似,但其反对与key相关联事件入队,保留多个事件,是informer机制的根底援用链接