基于 libbpf 的 TCP 连贯提早监督工具 tcpconnlat 剖析 - eBPF基础知识 Part5

《eBPF基础知识》 系列简介:

《eBPF基础知识》系列指标是整顿一下 BPF 相干的基础知识。次要聚焦程序与内核互动接口局部。文章应用了 libbpf,但如果你不间接应用 libbpf,看本系列还是有肯定意义的,因为它聚焦于程序与内核互动接口局部,而非 libbpf 封装自身。而所有 bpf 开发框架,都要以类似的形式跟内核互动。甚至框架自身就是基于 libbpf。哪怕是 golang/rust/python/BCC/bpftrace。

  1. 《ELF 格局简述 - eBPF基础知识 Part1》
  2. 《BPF 零碎接口 与 libbpf 示例剖析 - eBPF基础知识 Part2》
  3. 《经典 libbpf 范例: bootstrap 剖析 - eBPF基础知识 Part3》
  4. 《经典 libbpf 范例: uprobe 剖析 - eBPF基础知识 Part4》

国内习惯:尽量多图少文字。以下假如读者曾经对 BPF 有肯定的理解,或者浏览过之前的 《eBPF基础知识》系列文章。

很少人晓得,eBPF 的利用鼻祖 BCC 除了提供很多基于 python/bpftrace 的工具集之外,最近因为 libbpf 1.0 大大加强了:易用性、性能、执行文件的可移植性 BPF CO-RE (Compile Once – Run Everywhere) 的起因,开始有很多间接用 libbpf 1.0 写的 c 的 工具了。其中一个就是这篇文章要讲的 tcpconnlat 。

动机:为何我要钻研 libbpf 版本的 tcpconnlat

开始剖析前,我想说几句废话:为何我要钻研 libbpf 版本的 tcpconnlat?

  1. 理解这个经典又实用的 BPF 工具,如何与内核互动实现性能的。

    内核的 BPF 接口(syscall)因为历史和兼容性起因,设计得切实简单和不直观。syscall 设计者是想缩小 syscall 数量,一个 syscall 实现多功能。但同时也减少了应用的复杂度。这里想理解:

    • 须要用到哪些内核对象
    • 内核对象之间如何 link 起来,组成数据/事件流
  2. 学习如何应用 libbpf。这是主要指标。

    • libbpf 如何帮忙简化开发者与内核对话的难度

tcpconnlat 示例程序性能

tcpconnlat 程序通过:

  • 内核态 bpf 程序监听用户的 内核的 tcp_v4_connecttcp_rcv_state_process 函数,去记录和剖析 socket 连贯建设的用时状况。发送事件到 bpf_perf_event_output。阐明一下这两个函数:

    • tcp_v4_connect - 内核尝试建设 socket 时调用

      /* This will initiate an outgoing connection. */int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len){...}
  • tcp_rcv_state_process - 内核 socket 状态变动时调用

    /* *    This function implements the receiving procedure of RFC 793 for *    all states except ESTABLISHED and TIME_WAIT. *    It's called from both tcp_v4_rcv and tcp_v6_rcv and should be *    address independent. */int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb){...}
  • 用户态程序负责加载(load)和 attach 内核态 BPF 程序。而后监听 bpf_perf_event_output 事件,打印输出。
$ sudo ./tcpconnlatPID    COMM         IP SADDR            DADDR            DPORT LAT(ms)4218   code         4  192.168.1.14     192.168.1.17     8118  0.623930   Chrome_Child 4  192.168.1.14     192.168.1.17     8118  0.61...

程序阐明

uprobe 与内核互动概述

如上图排版有问题,请点这里用 Draw.io 关上。局部带互动链接和 hover tips

图中是我跟踪的后果。用 Draw.io 关上后,鼠标放到区域上,会 hover 出 stack(调用堆栈)。

图中的阐明曾经比拟具体。其中包含重要的数据结构和步骤。

1~5. 用户态 libbpf 数据加载与内存数据结构筹备

  1. .rodata mmap 内存页筹备
  2. vmlinux BTF 加载,用于 BPF CO-RE

为什么不再写了?因为切实不必要写,图中曾经有,一个疾速找到序号在图中的地位的小 tips 是,在 draw.io 中 CTRL+f 查找序号:

剖析环境阐明

$ uname -aLinux T30 5.15.0-67-generic #74-Ubuntu SMP Wed Feb 22 14:14:39 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux$ cat /etc/os-release PRETTY_NAME="Ubuntu 22.04.2 LTS"VERSION="22.04.2 LTS (Jammy Jellyfish)"

内核态 BPF 字节码程序

<mark>我始终致力防止在文章间接上代码。起因是,我本人的体验是,在文章中读代码太难了…… </mark>不过有时还是要贴。指标不是让读者齐全一次看懂代码,而是对次要逻辑和命名符号有个理性的理解。我尽量精简一下吧。不要被这纸老虎吓跑。只有配合图解。

先看 BPF 内核字节码程序局部:

tcpconnlat.bpf.c

const volatile __u64 targ_min_us = 0;const volatile pid_t targ_tgid = 0;struct piddata {    char comm[TASK_COMM_LEN];    u64 ts;    u32 tgid;};struct {    __uint(type, BPF_MAP_TYPE_HASH);    __uint(max_entries, 4096);    __type(key, struct sock *);    __type(value, struct piddata);} start SEC(".maps");struct {    __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);    __uint(key_size, sizeof(u32));    __uint(value_size, sizeof(u32));} events SEC(".maps");static int trace_connect(struct sock *sk){    u32 tgid = bpf_get_current_pid_tgid() >> 32;    struct piddata piddata = {};    if (targ_tgid && targ_tgid != tgid)        return 0;    bpf_get_current_comm(&piddata.comm, sizeof(piddata.comm));    piddata.ts = bpf_ktime_get_ns();    piddata.tgid = tgid;    bpf_map_update_elem(&start, &sk, &piddata, 0);    return 0;}static int handle_tcp_rcv_state_process(void *ctx, struct sock *sk){    struct piddata *piddatap;    struct event event = {};    s64 delta;    u64 ts;    if (BPF_CORE_READ(sk, __sk_common.skc_state) != TCP_SYN_SENT)        return 0;    piddatap = bpf_map_lookup_elem(&start, &sk);    if (!piddatap)        return 0;    ts = bpf_ktime_get_ns();    delta = (s64)(ts - piddatap->ts);    if (delta < 0)        goto cleanup;    event.delta_us = delta / 1000U;    if (targ_min_us && event.delta_us < targ_min_us)        goto cleanup;    __builtin_memcpy(&event.comm, piddatap->comm,            sizeof(event.comm));    event.ts_us = ts / 1000;    event.tgid = piddatap->tgid;    event.lport = BPF_CORE_READ(sk, __sk_common.skc_num);    event.dport = BPF_CORE_READ(sk, __sk_common.skc_dport);    event.af = BPF_CORE_READ(sk, __sk_common.skc_family);    if (event.af == AF_INET) {        event.saddr_v4 = BPF_CORE_READ(sk, __sk_common.skc_rcv_saddr);        event.daddr_v4 = BPF_CORE_READ(sk, __sk_common.skc_daddr);    } else {        BPF_CORE_READ_INTO(&event.saddr_v6, sk,                __sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);        BPF_CORE_READ_INTO(&event.daddr_v6, sk,                __sk_common.skc_v6_daddr.in6_u.u6_addr32);    }    bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU,            &event, sizeof(event));cleanup:    bpf_map_delete_elem(&start, &sk);    return 0;}SEC("fentry/tcp_v4_connect")int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk){    return trace_connect(sk);}SEC("fentry/tcp_rcv_state_process")int BPF_PROG(fentry_tcp_rcv_state_process, struct sock *sk){    return handle_tcp_rcv_state_process(ctx, sk);}

用户态 bpf 程序

tcpconnlat.c

#define PERF_BUFFER_PAGES    16#define PERF_POLL_TIMEOUT_MS    100static volatile sig_atomic_t exiting = 0;static struct env {    __u64 min_us;    pid_t pid;    bool timestamp;    bool lport;    bool verbose;} env;const char *argp_program_version = "tcpconnlat 0.1";const char *argp_program_bug_address =    "https://github.com/iovisor/bcc/tree/master/libbpf-tools";const char argp_program_doc[] ="\nTrace TCP connects and show connection latency.\n""\n""USAGE: tcpconnlat [--help] [-t] [-p PID] [-L]\n""\n""EXAMPLES:\n""    tcpconnlat              # summarize on-CPU time as a histogram\n""    tcpconnlat 1            # trace connection latency slower than 1 ms\n""    tcpconnlat 0.1          # trace connection latency slower than 100 us\n""    tcpconnlat -t           # 1s summaries, milliseconds, and timestamps\n""    tcpconnlat -p 185       # trace PID 185 only\n""    tcpconnlat -L           # include LPORT while printing outputs\n";static const struct argp_option opts[] = {    { "timestamp", 't', NULL, 0, "Include timestamp on output" },    { "pid", 'p', "PID", 0, "Trace this PID only" },    { "lport", 'L', NULL, 0, "Include LPORT on output" },    { "verbose", 'v', NULL, 0, "Verbose debug output" },    { NULL, 'h', NULL, OPTION_HIDDEN, "Show the full help" },    {},};static error_t parse_arg(int key, char *arg, struct argp_state *state){...}static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args){...}static void sig_int(int signo){    exiting = 1;}void handle_event(void *ctx, int cpu, void *data, __u32 data_sz){    const struct event *e = data;    char src[INET6_ADDRSTRLEN];    char dst[INET6_ADDRSTRLEN];    union {        struct in_addr  x4;        struct in6_addr x6;    } s, d;    static __u64 start_ts;    if (env.timestamp) {        if (start_ts == 0)            start_ts = e->ts_us;        printf("%-9.3f ", (e->ts_us - start_ts) / 1000000.0);    }    if (e->af == AF_INET) {        s.x4.s_addr = e->saddr_v4;        d.x4.s_addr = e->daddr_v4;    } else if (e->af == AF_INET6) {        memcpy(&s.x6.s6_addr, e->saddr_v6, sizeof(s.x6.s6_addr));        memcpy(&d.x6.s6_addr, e->daddr_v6, sizeof(d.x6.s6_addr));    } else {        fprintf(stderr, "broken event: event->af=%d", e->af);        return;    }    if (env.lport) {        printf("%-6d %-12.12s %-2d %-16s %-6d %-16s %-5d %.2f\n", e->tgid, e->comm,            e->af == AF_INET ? 4 : 6, inet_ntop(e->af, &s, src, sizeof(src)), e->lport,            inet_ntop(e->af, &d, dst, sizeof(dst)), ntohs(e->dport),            e->delta_us / 1000.0);    } else {        printf("%-6d %-12.12s %-2d %-16s %-16s %-5d %.2f\n", e->tgid, e->comm,            e->af == AF_INET ? 4 : 6, inet_ntop(e->af, &s, src, sizeof(src)),            inet_ntop(e->af, &d, dst, sizeof(dst)), ntohs(e->dport),            e->delta_us / 1000.0);    }}void handle_lost_events(void *ctx, int cpu, __u64 lost_cnt){    fprintf(stderr, "lost %llu events on CPU #%d\n", lost_cnt, cpu);}int main(int argc, char **argv){    static const struct argp argp = {        .options = opts,        .parser = parse_arg,        .doc = argp_program_doc,    };    struct perf_buffer *pb = NULL;    struct tcpconnlat_bpf *obj;    int err;    err = argp_parse(&argp, argc, argv, 0, NULL, NULL);    if (err)        return err;    libbpf_set_print(libbpf_print_fn);    obj = tcpconnlat_bpf__open();    if (!obj) {        fprintf(stderr, "failed to open BPF object\n");        return 1;    }    /* initialize global data (filtering options) */    obj->rodata->targ_min_us = env.min_us;    obj->rodata->targ_tgid = env.pid;    if (fentry_can_attach("tcp_v4_connect", NULL)) {        bpf_program__set_attach_target(obj->progs.fentry_tcp_v4_connect, 0, "tcp_v4_connect");        bpf_program__set_attach_target(obj->progs.fentry_tcp_v6_connect, 0, "tcp_v6_connect");        bpf_program__set_attach_target(obj->progs.fentry_tcp_rcv_state_process, 0, "tcp_rcv_state_process");        bpf_program__set_autoload(obj->progs.tcp_v4_connect, false);        bpf_program__set_autoload(obj->progs.tcp_v6_connect, false);        bpf_program__set_autoload(obj->progs.tcp_rcv_state_process, false);    } else {        bpf_program__set_autoload(obj->progs.fentry_tcp_v4_connect, false);        bpf_program__set_autoload(obj->progs.fentry_tcp_v6_connect, false);        bpf_program__set_autoload(obj->progs.fentry_tcp_rcv_state_process, false);    }    err = tcpconnlat_bpf__load(obj);    if (err) {        fprintf(stderr, "failed to load BPF object: %d\n", err);        goto cleanup;    }    err = tcpconnlat_bpf__attach(obj);    if (err) {        goto cleanup;    }    pb = perf_buffer__new(bpf_map__fd(obj->maps.events), PERF_BUFFER_PAGES,                  handle_event, handle_lost_events, NULL, NULL);    if (!pb) {        fprintf(stderr, "failed to open perf buffer: %d\n", errno);        goto cleanup;    }    /* print header */    if (env.timestamp)        printf("%-9s ", ("TIME(s)"));    if (env.lport) {        printf("%-6s %-12s %-2s %-16s %-6s %-16s %-5s %s\n",            "PID", "COMM", "IP", "SADDR", "LPORT", "DADDR", "DPORT", "LAT(ms)");    } else {        printf("%-6s %-12s %-2s %-16s %-16s %-5s %s\n",            "PID", "COMM", "IP", "SADDR", "DADDR", "DPORT", "LAT(ms)");    }    if (signal(SIGINT, sig_int) == SIG_ERR) {        fprintf(stderr, "can't set signal handler: %s\n", strerror(errno));        err = 1;        goto cleanup;    }    /* main: poll */    while (!exiting) {        err = perf_buffer__poll(pb, PERF_POLL_TIMEOUT_MS);        if (err < 0 && err != -EINTR) {            fprintf(stderr, "error polling perf buffer: %s\n", strerror(-err));            goto cleanup;        }        /* reset err to return 0 if exiting */        err = 0;    }cleanup:    perf_buffer__free(pb);    tcpconnlat_bpf__destroy(obj);    return err != 0;}

后记

技术开悟的路,或者和人的成熟过程一样,只有事实的磨难能力得道。