工夫序列剖析包含查看随着时间推移收集的数据点,目标是确定能够为将来预测提供信息的模式和趋势。咱们曾经介绍过很多个工夫序列剖析库了,然而随着时间推移,新的库和更新也在一直的呈现,所以本文将分享8个目前比拟罕用的,用于解决工夫序列问题的Python库。他们是tsfresh, autots, darts, atspy, kats, sktime, greykite。

1、Tsfresh

Tsfresh在工夫序列特征提取和抉择方面功能强大。它旨在主动从工夫序列数据中提取大量特色,并辨认出最相干的特色。Tsfresh反对多种工夫序列格局,可用于分类、聚类和回归等各种应用程序。

 importpandasaspd fromtsfreshimportextract_features fromtsfresh.utilities.dataframe_functionsimportmake_forecasting_frame  # Assume we have a time series dataset `data` with columns "time" and "value" data=pd.read_csv('data.csv')  # We will use the last 10 points to predict the next point df_shift, y=make_forecasting_frame(data["value"], kind="value", max_timeshift=10, rolling_direction=1)  # Extract relevant features using tsfresh X=extract_features(df_shift, column_id="id", column_sort="time", column_value="value", impute_function=impute)

2、AutoTS

autots是另一个用于工夫序列预测的Python库:

  • 提供了单变量和多变量工夫序列预测的各种算法,包含ARIMA, ETS, Prophet和DeepAR。
  • 为最佳模型执行主动模型集成。
  • 提供了上界和下界的置信区间预测。
  • 通过学习最优NaN imputation和异样值去除来解决数据。
 fromautots.datasetsimportload_monthly  df_long=load_monthly(long=True)  fromautotsimportAutoTS  model=AutoTS(     forecast_length=3,     frequency='infer',     ensemble='simple',     max_generations=5,     num_validations=2, ) model=model.fit(df_long, date_col='datetime', value_col='value', id_col='series_id')  # Print the description of the best model print(model)

3、darts

darts(Data Analytics and Real-Time Systems)有多种工夫序列预测模型,包含ARIMA、Prophet、指数平滑的各种变体,以及各种深度学习模型,如LSTMs、gru和tcn。Darts还具备用于穿插验证、超参数调优和特色工程的内置办法。

darts的一个要害特色是可能进行概率预测。这意味着,不仅能够为每个工夫步骤生成单点预测,还能够生成可能后果的散布,从而更全面地了解预测中的不确定性。

 importpandasaspd importmatplotlib.pyplotasplt  fromdartsimportTimeSeries fromdarts.modelsimportExponentialSmoothing  # Read data df=pd.read_csv("AirPassengers.csv", delimiter=",")  # Create a TimeSeries, specifying the time and value columns series=TimeSeries.from_dataframe(df, "Month", "#Passengers")  # Set aside the last 36 months as a validation series train, val=series[:-36], series[-36:]  # Fit an exponential smoothing model, and make a (probabilistic)  # prediction over the validation series’ duration model=ExponentialSmoothing() model.fit(train) prediction=model.predict(len(val), num_samples=1000)  # Plot the median, 5th and 95th percentiles series.plot() prediction.plot(label="forecast", low_quantile=0.05, high_quantile=0.95) plt.legend()

4、AtsPy

atspy,能够简略地加载数据并指定要测试的模型,如上面的代码所示。

 # Importing packages importpandasaspd fromatspyimportAutomatedModel  # Reading data df=pd.read_csv("AirPassengers.csv", delimiter=",")  # Preprocessing data  data.columns= ['month','Passengers'] data['month'] =pd.to_datetime(data['month'],infer_datetime_format=True,format='%y%m') data.index=data.month df_air=data.drop(['month'], axis=1)  # Select the models you want to run: models= ['ARIMA','Prophet'] run_models=AutomatedModel(df=df_air, model_list=models, forecast_len=10)

该包提供了一组齐全自动化的模型。包含:

5、kats

kats (kit to Analyze Time Series)是一个由Facebook(当初的Meta)开发的Python库。这个库的三个外围个性是:

模型预测:提供了一套残缺的预测工具,包含10+个独自的预测模型、集成、元学习模型、回溯测试、超参数调优和教训预测区间。

检测:Kats反对检测时间序列数据中的各种模式的函数,包含季节性、异样、变动点和迟缓的趋势变动。

特征提取和嵌入:Kats中的工夫序列特色(TSFeature)提取模块能够生成65个具备明确统计定义的特色,可利用于大多数机器学习(ML)模型,如分类和回归。

 # pip install kats  importpandasaspd fromkats.constsimportTimeSeriesData fromkats.models.prophetimportProphetModel, ProphetParams  # Read data df=pd.read_csv("AirPassengers.csv", names=["time", "passengers"])  # Convert to TimeSeriesData object air_passengers_ts=TimeSeriesData(air_passengers_df)  # Create a model param instance params=ProphetParams(seasonality_mode='multiplicative')  # Create a prophet model instance m=ProphetModel(air_passengers_ts, params)  # Fit model simply by calling m.fit() m.fit()  # Make prediction for next 30 month forecast=m.predict(steps=30, freq="MS") forecast.head()

6、Sktime

sktime是一个用于工夫序列剖析的库,它构建在scikit-learn之上,并遵循相似的API,能够轻松地在两个库之间切换。上面是如何应用Sktime进行工夫序列分类的示例:

 fromsktime.datasetsimportload_arrow_head fromsktime.classification.composeimportTimeSeriesForestClassifier fromsktime.utils.samplingimporttrain_test_split  # Load ArrowHead dataset X, y=load_arrow_head(return_X_y=True)  # Split data into train and test sets X_train, X_test, y_train, y_test=train_test_split(X, y)  # Create and fit a time series forest classifier classifier=TimeSeriesForestClassifier(n_estimators=100) classifier.fit(X_train, y_train)  # Predict labels for the test set y_pred=classifier.predict(X_test)  # Print classification report fromsklearn.metricsimportclassification_report print(classification_report(y_test, y_pred))

7、GreyKite

greykite是LinkedIn公布的一个工夫序列预测库。该库能够解决简单的工夫序列数据,并提供一系列性能,包含自动化特色工程、探索性数据分析、预测管道和模型调优。

 fromgreykite.common.data_loaderimportDataLoader fromgreykite.framework.templates.autogen.forecast_configimportForecastConfig fromgreykite.framework.templates.autogen.forecast_configimportMetadataParam fromgreykite.framework.templates.forecasterimportForecaster fromgreykite.framework.templates.model_templatesimportModelTemplateEnum  # Defines inputs df=DataLoader().load_bikesharing().tail(24*90)  # Input time series (pandas.DataFrame) config=ForecastConfig(      metadata_param=MetadataParam(time_col="ts", value_col="count"),  # Column names in `df`      model_template=ModelTemplateEnum.AUTO.name,  # AUTO model configuration      forecast_horizon=24,   # Forecasts 24 steps ahead      coverage=0.95,         # 95% prediction intervals  )  # Creates forecasts forecaster=Forecaster() result=forecaster.run_forecast_config(df=df, config=config)  # Accesses results result.forecast     # Forecast with metrics, diagnostics result.backtest     # Backtest with metrics, diagnostics result.grid_search  # Time series CV result result.model        # Trained model result.timeseries   # Processed time series with plotting functions

总结

咱们能够看到,这些工夫序列的库次要性能有2个方向,一个是特色的生成,另外一个就是多种工夫序列预测模型的集成,所以无论是解决单变量还是多变量数据,它们都能够满足咱们的需要,然而具体用那个还要看具体的需要和应用的习惯。

https://avoid.overfit.cn/post/45451d119a154aeba72bf8dd3eaa9496

作者:Joanna