前言

本文代码实现一个中文的敏感词过滤器,事后将筹备好的敏感词写入前缀树数据结构中实现疾速检索,并且节俭内存。个别用于查看注册用户名称、舆论是否蕴含不文化的词汇。

能够判断内容是否蕴含敏感词;找出内容中的敏感词;将内容中的敏感词替换成设置的字符。

运行环境

代码应用了JDK8语法,以及测试框架Jupiter。以下是Maven配置:

<properties>    <java.version>1.8</java.version>    <maven.compiler.source>${java.version}</maven.compiler.source>    <maven.compiler.target>${java.version}</maven.compiler.target>    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies>    <dependency>        <groupId>org.junit.jupiter</groupId>        <artifactId>junit-jupiter</artifactId>        <version>RELEASE</version>        <scope>test</scope>    </dependency></dependencies>

过滤器源码

import java.util.*;import java.util.function.Predicate;/** * 敏感词过滤器,限中文 */public class SensitiveWordFilters {    /**     * 如词典中有敏感词:[敏感, 敏感词]     * true     * ├── 匹配到[敏感]完结匹配     * └── 比拟省时,作简略判断用     * false     * ├── 匹配到[敏感词]才完结匹配     * └── 绝对费时,然而在替换敏感词的时候,可能替换掉更多匹配数据     */    private static final boolean SIMPLE_MATCH = false;    /**     * 疏忽字符列表     */    private static final List<Character> IGNORE_CHAR_LIST = ignoreCharListInit();    /**     * 疏忽局部字符     * 如词典中有敏感词:[敏感词],现验证文本[敏 感 词],也会认定为敏感词,因为疏忽了空格符     * 同样在 重构字典、往字典中加敏感词时也会应用此断言     */    private static final Predicate<Character> CHAR_IGNORE =            character -> Character.isSpaceChar(character) || IGNORE_CHAR_LIST.contains(character);    /**     * 重构字典     */    public static void refactoringBy(List<String> sensitiveWordList) {        refactor(sensitiveWordList);    }    /**     * 往字典中加敏感词     */    public static void add(List<String> sensitiveWordList) {        sensitiveWordList.forEach(word -> recordToThe(SensitiveWordCache.dictionary, word));    }    /**     * 往字典中加敏感词     */    public static void add(String sensitiveWord) {        recordToThe(SensitiveWordCache.dictionary, sensitiveWord);    }    /**     * true:text 中有敏感词     */    public static boolean foundIn(String text) {        if (isEmpty(text)) {            return false;        }        for (int i = 0; i < text.length(); i++) {            if (checkSensitiveWord(text, i) > 0) {                return true;            }        }        return false;    }    /**     * 从 text 中找出敏感词     */    public static Set<String> findOutFrom(String text) {        if (isEmpty(text)) {            return Collections.emptySet();        }        Set<String> resultSet = new TreeSet<>((o1, o2) -> o1.length() == o2.length() ? o1.compareTo(o2) : o2.length() - o1.length());        for (int i = 0; i < text.length(); i++) {            int endIndex = checkSensitiveWord(text, i);            if (endIndex > 0) {                resultSet.add(text.substring(i, ++endIndex));            }        }        return resultSet;    }    /**     * 替换 text 中的敏感词,每个字符换一个替换符     *     * @param text        文本     * @param replaceChar 替换符     * @return 替换后的文本     */    public static String replace(String text, String replaceChar) {        Set<String> sensitiveWordSet = findOutFrom(text);        if (sensitiveWordSet.isEmpty()) {            return text;        }        for (String sensitiveWord : sensitiveWordSet) {            text = text.replace(sensitiveWord, replacementOf(replaceChar, sensitiveWord.length()));        }        return text;    }    /**     * 字典缓存     */    private static class SensitiveWordCache {        /**         * 字典/字典根节点         */        static Node dictionary;        static {            dictionary = new Node();            dictionary.children = new HashMap<>(16);        }        private SensitiveWordCache() {        }    }    /**     * 重构字典     *     * @param sensitiveWordList 敏感字符列表     */    private static void refactor(List<String> sensitiveWordList) {        Node newDictionary = new Node();        newDictionary.children = new HashMap<>(16);        synchronized (SensitiveWordCache.class) {            for (String word : sensitiveWordList) {                recordToThe(newDictionary, word);            }            SensitiveWordCache.dictionary = newDictionary;        }    }    /**     * 将敏感字符记录在节点上     *     * @param node 节点     * @param word 敏感字符     */    private static void recordToThe(Node node, String word) {        Objects.requireNonNull(node);        synchronized (SensitiveWordCache.class) {            for (int i = 0, lastIndex = word.length() - 1; i < word.length(); i++) {                Character key = word.charAt(i);                if (!CHAR_IGNORE.test(key)) {                    // 搁置子节点                    Node next = node.get(key);                    if (Objects.isNull(next)) {                        next = new Node();                        node.putChild(key, next);                    }                    node = next;                }                if (i == lastIndex) {                    node.isEnd = true;                }            }        }    }    /**     * 从 startIndex 开始匹配敏感字符     *     * @param text       文本     * @param startIndex 文本起始地位     * @return 0-没有敏感字符,>0 敏感字符终止地位     */    private static int checkSensitiveWord(String text, int startIndex) {        int endIndex = 0;        Node node = SensitiveWordCache.dictionary;        for (int i = startIndex; i < text.length(); i++) {            Character key = text.charAt(i);            if (CHAR_IGNORE.test(key)) {                continue;            }            node = node.get(key);            if (Objects.isNull(node)) {                break;            }            if (node.isEnd) {                endIndex = i;                if (SIMPLE_MATCH) {                    break;                }            }        }        return endIndex;    }    private static boolean isEmpty(String str) {        return str == null || "".equals(str);    }    /**     * 生成残缺的替换符     *     * @param replaceChar 单字符替换符     * @param num         替换数量     * @return 残缺替换符     */    private static String replacementOf(String replaceChar, int num) {        int minJointLength = 2;        if (num < minJointLength) {            return replaceChar;        }        StringBuilder replacement = new StringBuilder();        for (int i = 0; i < num; i++) {            replacement.append(replaceChar);        }        return replacement.toString();    }    /**     * 字典数据节点     */    private static class Node {        /**         * true:敏感词结尾         */        boolean isEnd;        /**         * 子节点列表         */        Map<Character, Node> children;        Node get(Character key) {            return Objects.nonNull(children) ? children.get(key) : null;        }        void putChild(Character key, Node node) {            if (Objects.isNull(children)) {                children = new HashMap<>(16);            }            children.put(key, node);        }    }    /**     * 初始化疏忽字符列表     */    private static List<Character> ignoreCharListInit() {        List<Character> ignoreCharList = new ArrayList<>(10);        ignoreCharList.add('|');        ignoreCharList.add('-');        return Collections.unmodifiableList(ignoreCharList);    }    private SensitiveWordFilters() {    }}

过滤器测试类

import org.junit.jupiter.api.Assertions;import org.junit.jupiter.api.Test;import java.util.Arrays;class SensitiveWordFiltersTest {    /**     * 重构字典     */    @Test    void refactoringBy() {        SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));    }    /**     * 往字典中加敏感词     */    @Test    void add() {        SensitiveWordFilters.add(Arrays.asList("敏感词"));    }    /**     * 判断内容是否蕴含敏感词     */    @Test    void foundIn() {        SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));        Assertions.assertTrue(SensitiveWordFilters.foundIn("白银混蛋"));    }    /**     * 从内容中找出敏感词     */    @Test    void findOutFrom() {        SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));        System.out.println(SensitiveWordFilters.findOutFrom("白银混蛋"));    }    /**     * 替换内容中的敏感词     */    @Test    void replace() {        SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));        String string = "就算是一个 顶-级 高 手,也会被那个白银 混蛋坑得很惨";        System.out.println(SensitiveWordFilters.replace(string, "*"));    }    private static String[] getSensitiveWords() {        return sensitiveWords.split("\\|");    }    static final String sensitiveWords = "顶级|白银|混蛋";}