k8s v1.18减少了hpa v2beta2的behavior字段,能够更精细化的管制伸缩的行为:

  • 若不指定behavior字段,则按默认的behavior行为执行伸缩;
  • 若指定behavior字段,则按自定义的behavior行为执行伸缩;

一. demo

若behavior的策略(包含冷却工夫+伸缩策略)不满足需要,能够通过自定义behavior精细化管制伸缩的策略。

比方上面的behavior:

apiVersion: autoscaling/v2beta2kind: HorizontalPodAutoscalermetadata:  name: sample-appspec:  ...  behavior:    scaleUp:      policies:      - type: Percent        value: 900        periodSeconds: 300    scaleDown:      stabilizationWindowSeconds: 60      policies:      - type: Pods        value: 1        periodSeconds: 10
  • 扩容时:

    • 立刻扩容;
    • 每次扩容最大(1+9)*currentReplicas,即10倍的replicas;
    • 1次扩容后,冷却300s后能力持续扩容;
  • 缩容时:

    • 冷却60s才进行缩容,每次缩容1个正本;
    • 1次缩容后,冷却10s后能力持续缩容;

以下面的Hpa v2beta2的定义为例,查看其扩缩容的过程:

扩容,将指标猛增(1-->13):

  • 首先,依照指标计算,应该将正本数从1扩容到13;但因为scaleUp.policies的限度,最多扩容10倍,即1-->10个正本;
  • 而后,依据指标计算,冷却300s后,最终将正本数扩容至13;
# kubectl describe hpaName:                    sample-appNamespace:               defaultLabels:                  <none>Annotations:             <none>Reference:               Deployment/sample-appMetrics:                 ( current / target )  "metric_hpa" on pods:  1 / 1Min replicas:            1Max replicas:            15Behavior:  Scale Up:    Stabilization Window: 0 seconds    Select Policy: Max    Policies:      - Type: Percent  Value: 900  Period: 300 seconds  Scale Down:    Stabilization Window: 60 seconds    Select Policy: Max    Policies:      - Type: Pods  Value: 1  Period: 10 secondsDeployment pods:    13 current / 13 desiredConditions:  Type            Status  Reason              Message  ----            ------  ------              -------  AbleToScale     True    ReadyForNewScale    recommended size matches current size  ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric metric_hpa  ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable rangeEvents:  Type    Reason             Age    From                       Message  ----    ------             ----   ----                       -------  Normal  SuccessfulRescale  6m29s  horizontal-pod-autoscaler  New size: 10; reason: pods metric metric_hpa above target  Normal  SuccessfulRescale  79s    horizontal-pod-autoscaler  New size: 13; reason: pods metric metric_hpa above target

缩容,将指标猛降(13-->1):

  • 首先,冷却60s后进行缩容,每次缩容1个正本;
  • 而后,待上次缩容后10s,再次缩容1个正本;
  • 最终,缩容至1个正本;
# kubectl describe hpaName:                    sample-appNamespace:               defaultLabels:                  <none>Annotations:             <none>Reference:               Deployment/sample-appMetrics:                 ( current / target )  "metric_hpa" on pods:  1 / 1Min replicas:            1Max replicas:            15Behavior:  Scale Up:    Stabilization Window: 0 seconds    Select Policy: Max    Policies:      - Type: Percent  Value: 900  Period: 300 seconds  Scale Down:    Stabilization Window: 60 seconds    Select Policy: Max    Policies:      - Type: Pods  Value: 1  Period: 10 secondsDeployment pods:    1 current / 1 desiredConditions:  Type            Status  Reason              Message  ----            ------  ------              -------  AbleToScale     True    ReadyForNewScale    recommended size matches current size  ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric metric_hpa  ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable rangeEvents:  Type    Reason             Age                From                       Message  ----    ------             ----               ----                       -------  Normal  SuccessfulRescale  12m                horizontal-pod-autoscaler  New size: 10; reason: pods metric metric_hpa above target  Normal  SuccessfulRescale  6m59s              horizontal-pod-autoscaler  New size: 13; reason: pods metric metric_hpa above target  Normal  SuccessfulRescale  3m25s              horizontal-pod-autoscaler  New size: 12; reason: All metrics below target  Normal  SuccessfulRescale  3m9s               horizontal-pod-autoscaler  New size: 11; reason: All metrics below target  Normal  SuccessfulRescale  2m54s              horizontal-pod-autoscaler  New size: 10; reason: All metrics below target  Normal  SuccessfulRescale  2m38s              horizontal-pod-autoscaler  New size: 9; reason: All metrics below target  Normal  SuccessfulRescale  2m23s              horizontal-pod-autoscaler  New size: 8; reason: All metrics below target  Normal  SuccessfulRescale  2m7s               horizontal-pod-autoscaler  New size: 7; reason: All metrics below target  Normal  SuccessfulRescale  112s               horizontal-pod-autoscaler  New size: 6; reason: All metrics below target  Normal  SuccessfulRescale  34s (x5 over 96s)  horizontal-pod-autoscaler  (combined from similar events): New size: 1; reason: All metrics below target

二. 源码剖析

整个过程分以下几步:

  • 首先,若未设置scaleDown的冷却工夫,则配置默认冷却工夫=300s;
  • 而后,依据scaleUp/scaleDown的stabilizationWindow,计算指标正本数;
  • 最初,依据scaleUp/scaleDown的Policies,计算指标正本数;

// pkg/controller/podautoscaler/horizontal.gofunc (a *HorizontalController) normalizeDesiredReplicasWithBehaviors(hpa *autoscalingv2.HorizontalPodAutoscaler, key string, currentReplicas, prenormalizedDesiredReplicas, minReplicas int32) int32 {    // 1. 设置scaleDown的默认冷却工夫    a.maybeInitScaleDownStabilizationWindow(hpa)    normalizationArg := NormalizationArg{        Key:               key,        ScaleUpBehavior:   hpa.Spec.Behavior.ScaleUp,        ScaleDownBehavior: hpa.Spec.Behavior.ScaleDown,        MinReplicas:       minReplicas,        MaxReplicas:       hpa.Spec.MaxReplicas,        CurrentReplicas:   currentReplicas,        DesiredReplicas:   prenormalizedDesiredReplicas}    // 2. 依据冷却工夫计算正本数    stabilizedRecommendation, reason, message := a.stabilizeRecommendationWithBehaviors(normalizationArg)    normalizationArg.DesiredReplicas = stabilizedRecommendation    ...    // 3. 依据策略计算正本数    desiredReplicas, reason, message := a.convertDesiredReplicasWithBehaviorRate(normalizationArg)    ...    return desiredReplicas}

1. 设置scaleDown的默认冷却工夫

若scaleDown.StabilizationWindowSeoncds未设置,则默认=300s;

// pkg/controller/podautoscaler/horizontal.gofunc (a *HorizontalController) maybeInitScaleDownStabilizationWindow(hpa *autoscalingv2.HorizontalPodAutoscaler) {    behavior := hpa.Spec.Behavior    if behavior != nil && behavior.ScaleDown != nil && behavior.ScaleDown.StabilizationWindowSeconds == nil {        stabilizationWindowSeconds := (int32)(a.downscaleStabilisationWindow.Seconds())        // 默认=300s        hpa.Spec.Behavior.ScaleDown.StabilizationWindowSeconds = &stabilizationWindowSeconds    }}

2. 依据冷却工夫计算正本数

依据stabilizationWindow计算指标正本数,最终返回recommendation:

  • 首先,初始值=上一步计算的正本数(即指标计算的正本数);
  • 而后:

    • 若扩容,则recommendation=min(最近stabilizationWindowSeconds的伸缩正本数),这也意味着冷却stabilizationWindowSeconds;
    • 若缩容,则recommendation=max(最近stabilizationWindowSeconds的伸缩正本数),这也意味着冷却stabilizationWindowSeconds;
// pkg/controller/podautoscaler/horizontal.gofunc (a *HorizontalController) stabilizeRecommendationWithBehaviors(args NormalizationArg) (int32, string, string) {    recommendation := args.DesiredReplicas    ...    var betterRecommendation func(int32, int32) int32    // 扩容    if args.DesiredReplicas >= args.CurrentReplicas {        scaleDelaySeconds = *args.ScaleUpBehavior.StabilizationWindowSeconds       betterRecommendation = min    // min函数        reason = "ScaleUpStabilized"        message = "recent recommendations were lower than current one, applying the lowest recent recommendation"    } else {    // 缩容        scaleDelaySeconds = *args.ScaleDownBehavior.StabilizationWindowSeconds       betterRecommendation = max    // max函数        reason = "ScaleDownStabilized"        message = "recent recommendations were higher than current one, applying the highest recent recommendation"    }    ...    cutoff := time.Now().Add(-time.Second * time.Duration(scaleDelaySeconds))    for i, rec := range a.recommendations[args.Key] {        if rec.timestamp.After(cutoff) {            recommendation = betterRecommendation(rec.recommendation, recommendation)        }        ...    }    ...    return recommendation, reason, message}

3. 依据policies计算正本数

依据policies计算指标正本数

  • 若是扩容:

    • 依据scaleUp.Policies(percent/pods/period)计算扩容下限;
    • 扩容下限必须 <= hpaMaxReplicas;
    • 最终扩容正本数必须 <= 上一步计算的desiredReplicas;
  • 若是缩容:

    • 依据scaleDown.Policies(percent/pods/period)计算缩容下限;
    • 缩容下限必须 >= hpaMinReplicas;
    • 最终缩容正本数必须 >= 上一步计算的desiredReplicas;
// pkg/controller/podautoscaler/horizontal.gofunc (a *HorizontalController) convertDesiredReplicasWithBehaviorRate(args NormalizationArg) (int32, string, string) {    var possibleLimitingReason, possibleLimitingMessage string    // 扩容    if args.DesiredReplicas > args.CurrentReplicas {        // 依据scaleUp.Policies计算扩容下限        scaleUpLimit := calculateScaleUpLimitWithScalingRules(args.CurrentReplicas, a.scaleUpEvents[args.Key], args.ScaleUpBehavior)        ...        // 扩容下限必须 <= hpaMaxReplicas        maximumAllowedReplicas := args.MaxReplicas        if maximumAllowedReplicas > scaleUpLimit {            maximumAllowedReplicas = scaleUpLimit            possibleLimitingReason = "ScaleUpLimit"            possibleLimitingMessage = "the desired replica count is increasing faster than the maximum scale rate"        } else {            possibleLimitingReason = "TooManyReplicas"            possibleLimitingMessage = "the desired replica count is more than the maximum replica count"        }        // 扩容正本数必须 <= 上一步计算的desiredReplicas        if args.DesiredReplicas > maximumAllowedReplicas {            return maximumAllowedReplicas, possibleLimitingReason, possibleLimitingMessage        }    } else if args.DesiredReplicas < args.CurrentReplicas {     // 缩容        // 依据scaleDown.Policies计算缩容下限        scaleDownLimit := calculateScaleDownLimitWithBehaviors(args.CurrentReplicas, a.scaleDownEvents[args.Key], args.ScaleDownBehavior)        ...        // 缩容下限必须 >= hpaMinReplicas        minimumAllowedReplicas := args.MinReplicas        if minimumAllowedReplicas < scaleDownLimit {            minimumAllowedReplicas = scaleDownLimit            possibleLimitingReason = "ScaleDownLimit"            possibleLimitingMessage = "the desired replica count is decreasing faster than the maximum scale rate"        } else {            possibleLimitingMessage = "the desired replica count is less than the minimum replica count"            possibleLimitingReason = "TooFewReplicas"        }        // 缩容正本数必须 >= 上一步计算的desiredReplicas        if args.DesiredReplicas < minimumAllowedReplicas {            return minimumAllowedReplicas, possibleLimitingReason, possibleLimitingMessage        }    }    return args.DesiredReplicas, "DesiredWithinRange", "the desired count is within the acceptable range"}

扩容下限的计算,根据policy.percent/pods/period:

  • 能够存在多个policy:由scaleUp.SelectPolicy决定是抉择这些policy的max、min还是disable;
// pkg/controller/podautoscaler/horizontal.gofunc calculateScaleUpLimitWithScalingRules(currentReplicas int32, scaleEvents []timestampedScaleEvent, scalingRules *autoscalingv2.HPAScalingRules) int32 {    var result int32    var proposed int32    var selectPolicyFn func(int32, int32) int32    if *scalingRules.SelectPolicy == autoscalingv2.DisabledPolicySelect {        return currentReplicas // Scaling is disabled    } else if *scalingRules.SelectPolicy == autoscalingv2.MinPolicySelect {        result = math.MaxInt32        selectPolicyFn = min // For scaling up, the lowest change ('min' policy) produces a minimum value    } else {        result = math.MinInt32        selectPolicyFn = max // Use the default policy otherwise to produce a highest possible change    }    for _, policy := range scalingRules.Policies {        replicasAddedInCurrentPeriod := getReplicasChangePerPeriod(policy.PeriodSeconds, scaleEvents)        periodStartReplicas := currentReplicas - replicasAddedInCurrentPeriod        if policy.Type == autoscalingv2.PodsScalingPolicy {            // Pods            proposed = periodStartReplicas + policy.Value        } else if policy.Type == autoscalingv2.PercentScalingPolicy {    // Percent            // the proposal has to be rounded up because the proposed change might not increase the replica count causing the target to never scale up            proposed = int32(math.Ceil(float64(periodStartReplicas) * (1 + float64(policy.Value)/100)))        }        result = selectPolicyFn(result, proposed)    }    return result}

对于每个scaleUp的policy:

  • 首先,计算过来policy.periodSeconds这段时间的伸缩总正本数;
  • 而后,计算 以后正本数 - 过来policy.periodSconds工夫内的伸缩正本数;
  • 后面两步的目标:

    • 是抹平policy.periodSeconds工夫内的伸缩正本数;
    • 即下一次伸缩间隔上一次伸缩的冷却工夫;
  • 最初:

    • 若policy.Type=Pods,则再 + policy.Pods.Value正本数;
    • 若policy.Type=Percent,则再 * (1 + percent.Value)/100=最终正本数;

policy.periodSeconds工夫内的伸缩总正本数的计算:

// pkg/controller/podautoscaler/horizontal.gofunc getReplicasChangePerPeriod(periodSeconds int32, scaleEvents []timestampedScaleEvent) int32 {    period := time.Second * time.Duration(periodSeconds)    cutoff := time.Now().Add(-period)    var replicas int32    for _, rec := range scaleEvents {        if rec.timestamp.After(cutoff) {            replicas += rec.replicaChange    // 汇总periodSeconds工夫内的伸缩正本总数,扩容=+M,缩容=-N        }    }    return replicas}

缩容下限的计算,根据policy.percent/pods/period:

  • 与扩容下限的计算方法相似;
  • 区别在于:因为是缩容

    • perioldStartReplicas = 以后正本数 + 过来periodSeoncds内伸缩正本数;
    • 若policy.Type=Pods,则再 - policy.Pods.Value正本数;
    • 若policy.Type=Percent,则再 * (1 - percent.Value)/100=最终正本数;
// pkg/controller/podautoscaler/horizontal.gofunc calculateScaleDownLimitWithBehaviors(currentReplicas int32, scaleEvents []timestampedScaleEvent, scalingRules *autoscalingv2.HPAScalingRules) int32 {    var result int32    var proposed int32    var selectPolicyFn func(int32, int32) int32    if *scalingRules.SelectPolicy == autoscalingv2.DisabledPolicySelect {        return currentReplicas // Scaling is disabled    } else if *scalingRules.SelectPolicy == autoscalingv2.MinPolicySelect {        result = math.MinInt32        selectPolicyFn = max // For scaling down, the lowest change ('min' policy) produces a maximum value    } else {        result = math.MaxInt32        selectPolicyFn = min // Use the default policy otherwise to produce a highest possible change    }    for _, policy := range scalingRules.Policies {        replicasDeletedInCurrentPeriod := getReplicasChangePerPeriod(policy.PeriodSeconds, scaleEvents)        periodStartReplicas := currentReplicas + replicasDeletedInCurrentPeriod        if policy.Type == autoscalingv2.PodsScalingPolicy {        // Pod            proposed = periodStartReplicas - policy.Value        } else if policy.Type == autoscalingv2.PercentScalingPolicy {    // Percent            proposed = int32(float64(periodStartReplicas) * (1 - float64(policy.Value)/100))        }        result = selectPolicyFn(result, proposed)    }    return result}

参考:

1.https://zhuanlan.zhihu.com/p/245208287