在上一篇 SkeyeRTMPClient拉取RTMP流扩大反对HEVC(H.265)解决方案 中对于HEVCDecoderConfigurationRecord构造解析的解说存在一些表述上不分明的中央,本文为之续篇,重点对HEVC格局的MetaData构造的解析进行解说。
在SkeyeRTMPPusher扩大反对H265的解决方案讲述时。咱们对Metadata构造进行过详解,大家能够回顾一下这篇文章RTMP推送扩大反对HEVC(H265)之Metadata构造填写详解,重点来了,因为失常状况下,咱们只须要从MetaData中取出对咱们解码有用的数据头(即VPS,SPS和PPS),所以咱们对HEVCDecoderConfigurationRecord填充的MetaData其余数据并不关怀,然而,在解析时,咱们须要对该构造所有数据都解析进去,以保障能准确无误的获取到咱们所须要的数据头信息。

再次回顾HEVCDecoderConfigurationRecord构造:

typedef struct HEVCDecoderConfigurationRecord {    uint8_t  configurationVersion;    uint8_t  general_profile_space;    uint8_t  general_tier_flag;    uint8_t  general_profile_idc;    uint32_t general_profile_compatibility_flags;    uint64_t general_constraint_indicator_flags;    uint8_t  general_level_idc;    uint16_t min_spatial_segmentation_idc;    uint8_t  parallelismType;    uint8_t  chromaFormat;    uint8_t  bitDepthLumaMinus8;    uint8_t  bitDepthChromaMinus8;    uint16_t avgFrameRate;    uint8_t  constantFrameRate;    uint8_t  numTemporalLayers;    uint8_t  temporalIdNested;    uint8_t  lengthSizeMinusOne;    uint8_t  numOfArrays;    HVCCNALUnitArray *array;} HEVCDecoderConfigurationRecord;

而事实上,该构造如果间接填入到MetaData中是不正确的,咱们看ffmpeg中hevc.c文件中的实现,该构造具体申明如下:

// The CodecPrivate syntax shall follow the// syntax of HEVCDecoderConfigurationRecord// defined in ISO/IEC 14496-15.//// The number zero (0) shall be written to// the configurationVersion variable until// official finalization of 14496-15, 3rd ed.//// After its finalization, this field and the// following CodecPrivate structure shall// follow the definition of the// HEVCDecoderConfigurationRecord in 14496-15.unsigned int(8)  configurationVersion;unsigned int(2)  general_profile_space;unsigned int(1)  general_tier_flag;unsigned int(5)  general_profile_idc;unsigned int(32) general_profile_compatibility_flags;unsigned int(48) general_constraint_indicator_flags;unsigned int(8)  general_level_idc;bit(4) reserved = ‘1111’b;unsigned int(12) min_spatial_segmentation_idc;bit(6) reserved = ‘111111’b;unsigned int(2)  parallelismType;bit(6) reserved = ‘111111’b;unsigned int(2)  chromaFormat;bit(5) reserved = ‘11111’b;unsigned int(3)  bitDepthLumaMinus8;bit(5) reserved = ‘11111’b;unsigned int(3)  bitDepthChromaMinus8;bit(16) avgFrameRate;bit(2)  constantFrameRate;bit(3)  numTemporalLayers;bit(1)  temporalIdNested;unsigned int(2) lengthSizeMinusOne;unsigned int(8) numOfArrays;for (j=0; j < numOfArrays; j++) {  bit(1) array_completeness;  unsigned int(1)  reserved = 0;  unsigned int(6)  NAL_unit_type;  unsigned int(16) numNalus;  for (i=0; i< numNalus; i++) {    unsigned int(16) nalUnitLength;    bit(8*nalUnitLength) nalUnit;  }}

从上代码段咱们能够看出,以general_constraint_indicator_flags这个参数为例,构造体申明位宽64,而理论位宽是48,,所以构造体申明的参数位宽和理论位宽可能是不对等的,这就将导致解析MetaData时产生错位,从而解析产生谬误,从而,咱们从新意识HEVCDecoderConfigurationRecord,并申明其构造如下:

// RTMP扩大反对HEVC(H.265) [4/18/2019 SwordTwelve]typedef struct  _Parser_HEVCDecoderConfigurationRecord {    uint8_t  configurationVersion;    uint8_t  general_profile_space:2;    uint8_t  general_tier_flag:1;    uint8_t  general_profile_idc:5;    uint32_t general_profile_compatibility_flags;//6    uint8_t general_constraint_indicator_flags[6];//12    uint8_t  general_level_idc;    uint8_t reserved1:4;// bit(4) reserved = ‘1111’b;    uint8_t min_spatial_segmentation_idc_L:4;//12位之低4位    uint8_t min_spatial_segmentation_idc_H;//12位之高8位    uint8_t reserved2:6;//bit(6) reserved = ‘111111’b;    uint8_t  parallelismType:2;    uint8_t reserved3:6;//bit(6) reserved = ‘111111’b;    uint8_t  chromaFormat:2;    uint8_t reserved4:5;//bit(5) reserved = ‘11111’b;    uint8_t  bitDepthLumaMinus8:3;    uint8_t reserved5:5;//bit(5) reserved = ‘11111’b;    uint8_t  bitDepthChromaMinus8:3;    uint16_t avgFrameRate;    uint8_t  constantFrameRate:2;    uint8_t  numTemporalLayers:3;    uint8_t  temporalIdNested:1;    uint8_t  lengthSizeMinusOne:2;    uint8_t  numOfArrays;    //Parser_HVCCNALUnitArray *array;} Parser_HEVCDecoderConfigurationRecord;

当初位宽曾经对齐,咱们能够间接从MetaData外面讲该构造拷贝进去,从而获取到正确的参数和值,如下代码所示:

        Parser_HEVCDecoderConfigurationRecord *decoder_header = (Parser_HEVCDecoderConfigurationRecord*)((char*)parser_config);        parser_offset += sizeof(Parser_HEVCDecoderConfigurationRecord);        int nNumOfArrays = decoder_header->numOfArrays;        for (int i=0; i<nNumOfArrays; i++)        {            ......        }

同理,咱们从MetaData中拷贝出nal单元数据头也是须要思考这个问题,这里咱们申明Parser_HVCCNALUnitArray构造如下:

// RTMP扩大反对HEVC(H.265) [4/18/2019 SwordTwlve]typedef struct _Parser_HVCCNALUnitArray {    uint8_t  NAL_unit_type;//    uint16_t numNalus;//     uint16_t *nalUnitLength;//     uint8_t  **nalUnit;} Parser_HVCCNALUnitArray;

如上代码所示,为了保障字节对齐,咱们只保留NAL_unit_type参数,通过字节拷贝运行,计算出nalu的数量numNalus,而后再从nalunit数组中获得咱们须要的头信息。

    Parser_HVCCNALUnitArray* pNALUnit = (Parser_HVCCNALUnitArray*)((char *)parser_config+parser_offset);    parser_offset += sizeof(Parser_HVCCNALUnitArray);    int numNalus = ntohs(*(unsigned short *)((char *)parser_config + parser_offset));      parser_offset += 2;    for (int nI=0; nI<numNalus; nI++)    {        ......    }