上一篇文章咱们定义了音讯体和根底工具,这一篇咱们开始着手客户端的处理函数和 channel 的根底设计。
客户端处理函数
这里所谓的客户端指的是消费者,处理函数也就是解决消费者同咱们服务之间的 tcp 连贯。咱们定义一个构造体 Client,外面蕴含有连贯和状态字段,而后就是编写读写状态和 tcp 连贯的相干函数。
client.go
package serverimport ( "encoding/binary" "io" "log")type Client struct { conn io.ReadWriteCloser name string state int}func NewClient(conn io.ReadWriteCloser, name string) *Client { return &Client{conn, name, -1}}func (c *Client) String() string { return c.name}func (c *Client) GetState() int { return c.state}func (c *Client) SetState(state int) { c.state = state}func (c *Client) Read(data []byte) (int, error) { return c.conn.Read(data)}func (c *Client) Write(data []byte) (int, error) { var err error err = binary.Write(c.conn, binary.BigEndian, int32(len(data))) if err != nil { return 0, err } n, err := c.conn.Write(data) if err != nil { return 0, err } return n + 4, nil}func (c *Client) Close() { log.Printf("CLIENT(%s): closing", c.String()) c.conn.Close()}
这里的逻辑比较简单,惟一值得一提的是 Write 办法。在给消费者写音讯之前,咱们先往连贯中写入音讯体的长度,固定为 4 个字节,这样客户端读取的时候就能够先读取长度,而后按长度读取音讯。
channel
从上篇文章中咱们能够晓得,channel 是咱们这个音讯队列中的外围数据结构之一,因而它的设计尤为重要。
保护消费者信息
首先,因为咱们的消费者是从 channel 中读取音讯的,所以 channel 中须要保护消费者的信息,并且能够增删消费者。因而咱们先在 channel 构造中保护一个 consumer 数组和两个管道用来接管增删 consumer 的音讯:
type Consumer interface { Close()}type Channel struct { name string addClientChan chan util.ChanReq removeClientChan chan util.ChanReq clients []Consumer}func (c *Channel) AddClient(client Consumer) { log.Printf("Channel(%s): adding client...", c.name) doneChan := make(chan interface{}) c.addClientChan <- util.ChanReq{ Variable: client, RetChan: doneChan, } <-doneChan}func (c *Channel) RemoveClient(client Consumer) { log.Printf("Channel(%s): removing client...", c.name) doneChan := make(chan interface{}) c.removeClientChan <- util.ChanReq{ Variable: client, RetChan: doneChan, } <-doneChan}
值得注意的是,这里咱们没有间接绑定下面的 Client 构造体,而是形象出了一个 Consumer 接口。这样做的益处是倒转依赖关系,而且能够防止包循环援用。
既然有了接管音讯的管道,那么咱们须要一个常驻后盾的 goroutine 来解决这些音讯,能够称之为事件处理循环,也就是一个 for + select 组合:
// Router handles the events of Channelfunc (c *Channel) Router() { var clientReq util.ChanReq for { select { case clientReq = <-c.addClientChan: client := clientReq.Variable.(Consumer) c.clients = append(c.clients, client) log.Printf("CHANNEL(%s) added client %#v", c.name, client) clientReq.RetChan <- struct{}{} case clientReq = <-c.removeClientChan: client := clientReq.Variable.(Consumer) indexToRemove := -1 for k, v := range c.clients { if v == client { indexToRemove = k break } } if indexToRemove == -1 { log.Printf("ERROR: could not find client(%#v) in clients(%#v)", client, c.clients) } else { c.clients = append(c.clients[:indexToRemove], c.clients[indexToRemove+1:]...) log.Printf("CHANNEL(%s) removed client %#v", c.name, client) } clientReq.RetChan <- struct{}{} } }}
收发音讯
对于收发音讯,这里咱们应用三个管道来实现:
- msgChan:这是一个有缓冲管道,用来暂存音讯,超过长度则抛弃音讯(后续会加上长久化到磁盘的性能)
- incomingMessageChan:用来接管生产者的音讯
- clientMessageChan:音讯会被发送到这个管道,后续会由消费者拉取
代码如下:
type Channel struct { ... incomingMessageChan chan *Message msgChan chan *Message clientMessageChan chan *Message}func (c *Channel) PutMessage(msg *Message) { c.incomingMessageChan <- msg}func (c *Channel) PullMessage() *Message { return <-c.clientMessageChan}func (c *Channel) Router() { var clientReq util.ChanReq go c.MessagePump() for { select { ... case msg := <-c.incomingMessageChan: // 避免因 msgChan 缓冲填满时造成阻塞,加上一个 default 分支间接抛弃音讯 select { case c.msgChan <- msg: log.Printf("CHANNEL(%s) wrote message", c.name) default: } } }}// MessagePump send messages to ClientMessageChanfunc (c *Channel) MessagePump() { var msg *Message for { select { case msg = <-c.msgChan: } c.clientMessageChan <- msg }}
敞开
当 channel 敞开的时候,咱们须要做一些清理的工作,首先咱们减少一个接管敞开信号的管道,在接管到信号时敞开发送音讯的 MessagePump 协程和消费者连贯,代码如下:
type Channel struct { ... exitChan chan util.ChanReq}func (c *Channel) Router() { var ( ... closeChan = make(chan struct{}) ) go c.MessagePump(closeChan) for { select { ... case closeReq := <-c.exitChan: log.Printf("CHANNEL(%s) is closing", c.name) close(closeChan) for _, consumer := range c.clients { consumer.Close() } closeReq.RetChan <- nil } }}// MessagePump send messages to ClientMessageChanfunc (c *Channel) MessagePump(closeChan chan struct{}) { var msg *Message for { select { ... case <-closeChan: return } ... }}func (c *Channel) Close() error { errChan := make(chan interface{}) c.exitChan <- util.ChanReq{ RetChan: errChan, } err, _ := (<-errChan).(error) return err}
咱们在事件处理循环中初始化一个管道,并作为参数传递给 MessagePump 协程,当接管到敞开信号时敞开此管道,而后顺次敞开消费者连贯,敞开逻辑就完结了。
channel 的残缺代码如下:
channel.go
此时咱们的目录构造为: