一款完全免费的内核级内存读写工具,可冲破驱动爱护,强制读写应用层任意过程内存数据,驱动工具目前反对读写整数,字节,字节集,单精度浮点数,双精度浮点数,多级偏移读写,取模块地址,调配近程内存等性能,读写效率高,速度快,兼容性好,应用时需本人签名或在测试模式下。
C++ 调用接口
目前驱动读写反对的读写函数如下表所示,须要留神的是SwitchDriver
在根底版本中不存在,如需应用请购买Pro专业版,专业版与根底版惟一的区别是在读写形式上,专业版具备更强的读写模式,而根底版则只反对Cr3读写模式;
导出函数 | 函数作用 |
---|---|
BOOL SwitchDriver(PCHAR pSwitch) | 切换内存条模式(Pro) |
BOOL SetPid(DWORD Pid) | 设置全局过程PID |
BOOL Read(ULONG64 address, T* ret) | 自定义读内存 |
BOOL Write(ULONG64 address, T data) | 自定义读内存 |
BOOL ReadMemoryDWORD(ULONG64 addre, DWORD * ret) | 读内存DWORD |
BOOL ReadMemoryDWORD64(ULONG64 addre, DWORD64 * ret) | 读内存DWORD64 |
BOOL ReadMemoryBytes(ULONG64 addre, BYTE **ret, DWORD sizes) | 读内存字节 |
BOOL ReadMemoryFloat(ULONG64 addre, float* ret) | 读内存浮点数 |
BOOL ReadMemoryDouble(ULONG64 addre, double* ret) | 读内存双精度浮点数 |
BOOL WriteMemoryBytes(ULONG64 addre, BYTE * data, DWORD sizes) | 写内存字节 |
BOOL WriteMemoryDWORD(ULONG64 addre, DWORD ret) | 写内存DWORD |
BOOL WriteMemoryDWORD64(ULONG64 addre, DWORD64 ret) | 写内存DWORD64 |
BOOL WriteMemoryFloat(ULONG64 addre, float ret) | 写内存浮点数 |
BOOL WriteMemoryDouble(ULONG64 addre, double ret) | 写内存双精度浮点数 |
DWORD ReadDeviationMemory32(ProcessDeviationMemory *read_offset_struct) | 计算32位偏移数据基址 |
DWORD64 ReadDeviationMemory64(ProcessDeviationMemory *read_offset_struct) | 计算64位偏移数据基址 |
DWORD64 GetModuleAddress(std::string dllname) | 驱动读取过程模块基地址 |
DWORD64 GetSystemRoutineAddress(std::string funcname) | 获取零碎函数内存地址 |
DWORD64 CreateRemoteMemory(DWORD length) | 在对端分配内存空间 |
DWORD DeleteRemoteMemory(DWORD64 address, DWORD length) | 销毁对端内存 |
新版本读写API接口在读写内存之前须要提前设置过程PID号,前期的调用将不须要再传入过程PID,此类读写适宜长期读,某些FPS射击类游戏的人物数组,3D类游戏坐标因为坐标会频繁挪动,需继续不间断读取,此读写模块将很适,接下来将带大家剖析并简略应用这些API接口实现性能。
在应用LyMemoryLib
动态库之前请确保您曾经正确的配置了Visual Studio
援用头文件。
如何装置与卸载驱动: 读写的第一步是装置驱动并将其运行,当然你能够通过第三方组件对驱动进行装置,也能够应用LyMemoryLib
中的函数实现装置,如下则是通过LyMemoryLib.hpp
将驱动加载的残缺实现;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")// 装置驱动BOOL InstallDriver(LyMemoryDrvCtrl Memory){ char szSysFile[MAX_PATH] = { 0 }; char szSvcLnkName[] = "LyMemory";; BOOL ref = FALSE; DWORD index = 0; // 获取残缺门路 Memory.GetAppPath(szSysFile); strcat_s(szSysFile, "LyMemory.sys"); printf("驱动门路: %s \n", szSysFile); index = index + 1; // 装置驱动 ref = Memory.Install(szSysFile, szSvcLnkName, szSvcLnkName); printf("装置状态: %d \n", ref); index = index + 1; // 启动驱动 ref = Memory.Start(); printf("启动状态: %d \n", ref); index = index + 1; // 关上 ref = Memory.Open("\\\\.\\LyMemory"); printf("关上状态: %d \n", ref); index = index + 1; if (index == 4 && ref == TRUE) { return TRUE; } return FALSE;}// 卸载驱动BOOL RemoveDriver(LyMemoryDrvCtrl Memory){ BOOL ref = 0; // 敞开 ref = Memory.Stop(); printf("敞开状态: %d \n", ref); // 移除 ref = Memory.Remove(); printf("移除状态: %d \n", ref); return ref;}int main(int argc, char* argv[]){ LyMemoryDrvCtrl DriveControl; // 加载驱动 BOOL ref = InstallDriver(DriveControl); if (ref == TRUE) { printf("[*] 驱动已加载 \n"); } // 卸载驱动 RemoveDriver(DriveControl); system("pause"); return 0;}
如上代码编译后并以管理员权限运行,则会将驱动LyMemory.sys
主动加载,并在调试板输入如下图所示的信息;
设置PID过程绑定: 如果须要应用读写函数,第一步则是设置过程PID
绑定,通常可通过SetPid(DWORD Pid)
函数传入过程PID
进行绑定操作,一旦过程被绑定则后续无需再次关上,进步了读写效率,也可预防屡次附加脱离导致应用层异样,如果须要应用设置PID则你能够这样来写;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } system("pause"); return 0;}
运行如上代码所示将主动绑定到过程6536
并输入绑定状态,如下图所示;
内核读取模块基址: 因为目前过程已被附加到到驱动上,此时能够调用GetModuleAddress()
获取过程内特定模块的基址,此函数接管一个模块名;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 取模块基址 DWORD64 user32 = DriveControl.GetModuleAddress("user32.dll"); printf("user32 = 0x%p \n", user32); DWORD64 kernel32 = DriveControl.GetModuleAddress("kernel32.dll"); printf("kernel32 = 0x%p \n", kernel32); system("pause"); return 0;}
如上代码编译并运行,则取出被附加过程内user32.dll
以及kernel32.dll
的模块基址,输入效果图如下所示;
取内核函数基址: 与取应用层模块基址相似,函数GetSystemRoutineAddress
可用于获取到内核模块中特定导出函数的内存基址。
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 取函数地址 CHAR *SzFunction[3] = { "NtReadFile", "NtClose", "NtSetEvent" }; for (size_t i = 0; i < 3; i++) { DWORD64 ptr = DriveControl.GetSystemRoutineAddress(SzFunction[i]); printf("函数 = %s | 地址 = 0x%p \n", SzFunction[i], ptr); } system("pause"); return 0;}
运行如上方所示的代码片段,则主动取出"NtReadFile", "NtClose", "NtSetEvent"
三个函数的内存地址,输入效果图如下所示;
调配与开释堆空间: 在对端内存中开拓一段内存可调用CreateRemoteMemory
函数实现,开释堆空间则可调用DeleteRemoteMemory
函数,默认状况下调配的空间自带读写执行属性,为Hook挂钩
转向提供可能。
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 分配内存空间 DWORD64 address = DriveControl.CreateRemoteMemory(1024); printf("[+] 已分配内存 = 0x%p \n", address); // 开释内存 BOOL del = DriveControl.DeleteRemoteMemory(address, 1024); if (del == TRUE) { printf("[-] 内存空间 0x%p 已被开释 \n", address); } system("pause"); return 0;}
如上代码片段运行后,将在对端内存中调配address
的地址,调配后主动将其开释,输入效果图如下所示;
读/写内存整数型: 整数类型的读取可调用ReadMemoryDWORD
读取32位整数,调用ReadMemoryDWORD64
则读取64位整数型;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取32位整数 DWORD read_value = 0; BOOL read_flag = DriveControl.ReadMemoryDWORD(0x0188F828, &read_value); if (read_flag == TRUE) { printf("[*] 读取32位数据 = %d \n", read_value); } // 读取64位整数 DWORD64 read64_value = 0; BOOL read64_flag = DriveControl.ReadMemoryDWORD64(0x0188F828, &read64_value); if (read64_flag == TRUE) { printf("[*] 读取64位数据 = %d \n", read64_value); } system("pause"); return 0;}
编译并运行如上代码片段,则会读取0x0188F828
处的整数类型数据,读取输入效果图如下所示;
写入整数类型同理,调用WriteMemoryDWORD
写出32位整数,调用WriteMemoryDWORD64
写出64位整数;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写入32位整数 BOOL write32 = DriveControl.WriteMemoryDWORD(0x0188F828, 1000); if (write32 == TRUE) { printf("[+] 写出数据实现 \n"); } // 写入64位整数 BOOL write64 = DriveControl.WriteMemoryDWORD64(0x0188F828, 2000); if (write64 == TRUE) { printf("[+] 写出数据实现 \n"); } system("pause"); return 0;}
编译并运行代码,将向指标过程别离写出1000
及2000
,代码输入成果如下图所示;
读/写内存字节集: 内存读写字节集可调用ReadMemoryBytes
函数,写出字节集调用WriteMemoryBytes
函数;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取字节集 BYTE buffer[8] = { 0 }; BYTE* bufferPtr = buffer; BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(buffer)); if (flag == TRUE) { for (int x = 0; x < 8; x++) { printf("[+] 读取字节: 0x%x \n", buffer[x]); } } system("pause"); return 0;}
运行如上代码片段,即可在内存0x401000
处开始读取字节集,向后读取8字节,并存入buffer
中,输入效果图如下所示;
写出字节集与读取基本一致,函数WriteMemoryBytes
则用于写出字节集数据,写出是需传递一个定义好的字节数组;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写内存字节集 BYTE writebuff[4] = { 0x90, 0x90, 0x90, 0x90 }; BOOL flag = DriveControl.WriteMemoryBytes(0x401000, writebuff, sizeof(writebuff)); if (flag == TRUE) { printf("[+] 写出字节集实现 \n"); } system("pause"); return 0;}
运行如上代码片段,则将字节集写出到0x401000
内存处,写出成果如下图所示;
读/写内存浮点数: 浮点数可分为单浮点与双浮点,单浮点可应用ReadMemoryFloat
实现读写,双浮点则调用ReadMemoryDouble
实现,两者实现原理完全一致,仅仅只是读写时多出了4个字节的宽度而已。
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取单浮点 float read_float = 0; BOOL float_flag = DriveControl.ReadMemoryFloat(0x01894EF8, &read_float); if (float_flag == TRUE) { printf("[+] 读取单精度 = %f \n", read_float); } // 读取双浮点 double read_double = 0; BOOL double_flag = DriveControl.ReadMemoryDouble(0x01894EF8, &read_double); if (double_flag == TRUE) { printf("[+] 读取双精度 = %f \n", double_flag); } system("pause"); return 0;}
运行后输入两个浮点数,留神双精度此处并不是谬误而是输入问题,效果图如下所示;
那么如何写出数据呢,只须要调用WriteMemoryFloat
即可实现写出浮点数的目标;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 写取单浮点 BOOL ref = DriveControl.WriteMemoryFloat(0x01894EF8, 100.245); if (ref == TRUE) { printf("[+] 写出数据实现 \n"); } system("pause"); return 0;}
以单精度浮点数为例,写出数据后输入如下成果;
计算多级偏移动静地址: 函数ReadDeviationMemory32
可实现动静计算多级偏移的性能,该函数最多可承受32级偏移的计算,计算后可失去一个动静地址,用户失去动静地址后可对其地址执行读写整数,字节,字节集,浮点数等各类操作,咱们以整数读写为例子;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(6536); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 计算四级偏移动静地址 ProcessDeviationMemory read_offset_struct = { 0 }; read_offset_struct.Address = 0x6566e0; // 基地址 read_offset_struct.OffsetSize = 4; // 偏移长度 read_offset_struct.Data = 0; // 读入的数据 read_offset_struct.Offset[0] = 0x18; // 一级偏移 read_offset_struct.Offset[1] = 0x0; // 二级偏移 read_offset_struct.Offset[2] = 0x14; // 三级偏移 read_offset_struct.Offset[3] = 0x0c; // 四级偏移 // 开始计算 DWORD BaseAddress = DriveControl.ReadDeviationMemory32(&read_offset_struct); printf("[+] 失去动静地址 = 0x%016lx \n", BaseAddress); // 读取整数 DWORD GetDWORD = 0; BOOL flag = DriveControl.ReadMemoryDWORD(BaseAddress, &GetDWORD); if (flag == TRUE) { printf("[+] 读取数据 = %d \n", GetDWORD); } system("pause"); return 0;}
如上代码通过调用ReadDeviationMemory32
计算出以后动静地址的基址,并通过ReadMemoryDWORD
读取此处的内存DWORD类型,输入成果如下所示;
内存读写反汇编: 读写函数咱们可应用ReadMemoryBytes
实现字节集的读取,通过使用capstone
反汇编引擎即可对特定内存空间进行反汇编操作;
// 署名权// right to sign one's name on a piece of work// PowerBy: LyShark// Email: me@lyshark.com#include "LyMemoryLib.h"#include <Windows.h>#include <iostream>#include <inttypes.h>#include <capstone\capstone.h>#pragma comment(lib,"capstone64.lib")#pragma comment(lib,"advapi32.lib")#pragma comment(lib,"LyMemoryLib.lib")int main(int argc, char *argv[]){ LyMemoryDrvCtrl DriveControl; DriveControl.InstallAndRun(); BOOL set_pid = DriveControl.SetPid(5588); if (set_pid == TRUE) { printf("[*] 设置PID = %d \n", set_pid); } // 读取前1024个字节 BYTE MyArray[1024] = { 0 }; BYTE* bufferPtr = MyArray; BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(MyArray)); if (flag == TRUE) { printf("[*] 读取结束 \n"); } csh handle; cs_insn *insn; size_t count; int size = 1023; // 关上句柄 if (cs_open(CS_ARCH_X86, CS_MODE_32, &handle) != CS_ERR_OK) { return 0; } // 反汇编代码,地址从0x1000开始,返回总条数 count = cs_disasm(handle, (unsigned char *)MyArray, size, 0x401000, 0, &insn); if (count > 0) { size_t index; for (index = 0; index < count; index++) { /* for (int x = 0; x < insn[index].size; x++) { printf("机器码: %d -> %02X \n", x, insn[index].bytes[x]); } */ printf("地址: 0x%"PRIx64" | 长度: %d 反汇编: %s %s \n", \ insn[index].address, insn[index].size, insn[index].mnemonic, insn[index].op_str); } cs_free(insn, count); } /* else { printf("反汇编返回长度为空 \n"); } */ cs_close(&handle); system("pause"); return 0;}
运行后即可对过程中0x401000
的内存区域向下反汇编1024
个字节,输入效果图如下所示;
我的项目地址
https://github.com/lyshark/LyMemory