吕声辉,飞桨开发者技术专家(PPDE),某网络科技公司研发工程师。次要钻研方向为图像识别,自然语言解决等。 • AI Studio主页
https://aistudio.baidu.com/aistudio/personalcenter/thirdview/...
我的项目背景
随着互联网的倒退,普通用户对于书籍展现模式的需要已由纯文字变成了图文、语音、视频等多种形式,因而将文本书籍转换为有声读物具备很大的市场需求。本文以飞桨语音模型库PaddleSpeech提供的语音合成技术为外围,通过音色克隆、语速设置、音量调整等附加性能,展现有声书籍的技术可行计划。
最终出现成果如
player.bilibili.com/player.html?bvid=BV1x84y1V7SR
网页体验拜访地址
https://book.weixin12306.com/
环境筹备
PaddleSpeech 是基于飞桨的语音方向开源模型库,用于语音和音频中的各种要害工作的开发,蕴含大量基于深度学习的前沿和有影响力的模型。首先进行PaddleSpeech装置环境的配置,配置如下:
# 留神如果之前运行过这步 下次就不必再运行了,这个目录重启我的项目也不会清空的# 下载解压谈话人编码器!wget -P data https://bj.bcebos.com/paddlespeech/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip!unzip -o -d work data/ge2e_ckpt_0.3.zip# 下载解压声码器!wget -P data https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip!unzip -o -d work data/pwg_aishell3_ckpt_0.5.zip# 下载解压声学模型!wget -P data https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip!unzip -o -d work data/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip# 下载解压nltk包!wget -P data https://paddlespeech.bj.bcebos.com/Parakeet/tools/nltk_data.tar.gz!tar zxvf data/nltk_data.tar.gz# 装置PaddleSpeech!pip install pytest-runner!pip install paddlespeech# 将nltk_data 拷贝到 /home/aistudio 目录!cp -r /home/aistudio/work/nltk_data /home/aistudio# 装置moviepy !pip install moviepy==1.0.3
数据处理
每本书的内容均以json格局寄存在txt文本中,门路为
/work/books/inputs/bookname.txt。为不便演示,这里以三国演义为例。
{ “name”: “三国演义”, “lists”: [{ “title”: “第一回 宴桃园俊杰三结义 斩黄巾英雄首犯罪” “content”: “滚滚长江东逝水,浪花淘尽英雄。是非成败转头空。青山依}, { “title”: “第二回 张翼德怒鞭督邮 何国舅谋诛宦竖”, “content”: “且说董卓字仲颖,陇西临洮人也,官拜河东太守,自来自豪 }]}
音频合成
段落句子宰割
以换行符"\n"宰割为段落,以"。"宰割为句子。
# 段落和句子宰割def lists(self, lists): results = [] for i in range(len(lists)): item = lists[i] title = item['title'] content = item['content'] sections = [] sentences = [] contents = content.split('\n') for citem in contents: if len(citem) > 1: sections.append(citem) sentenceIndex = 0 for sitems in sections: sitems_ = [] for tmp in sitems.split('。'): if len(tmp) > 1: sitems_.append(tmp) for j in range(len(sitems_)): sentence = { 'id':sentenceIndex, 'sentence': sitems_[j], 'end': 0 if j < len(sitems_) - 1 else 1 } sentences.append(sentence) sentenceIndex += 1 result = { 'id':i, 'title':title, 'sentences':sentences } results.append(result) return results
特殊字符解决
在国学书籍中,有可能呈现很多生僻字或者特殊符号,这里须要做针对性的替换。
# 非凡解决示例,工程化最好用字典主动判断替换def dealText(self, text): text = text.replace('-','') text = text.replace(' ', '') text = text.replace('’','') text = text.replace('﨑','崎') text = text.replace("[",' ') text = text.replace("]",' ') text = text.replace(' ',' ') text = text.replace(",]","") text = text.replace("1","1") text = text.replace("2",'2') text = text.replace("6","6") text = text.replace("〔","") text = text.replace("─","") text = text.replace("┬","") text = text.replace("┼","") text = text.replace("┴","") text = text.replace("〖"," ") text = text.replace("〗"," ") text = text.replace("礻殳","祋") return text
音频合成
依据宰割的ID,保留到对应地位。
# 音频合成def audio(self, contents): self.tts = TTSExecutor() for i in range(len(contents['lists'])): item = contents['lists'][i] basePath = self.bookPathOutput+'/'+self.bookname+'/'+str(i) if os.path.exists(basePath) is False: os.makedirs(r''+basePath) # 生成每回题目音频 self.text2audio(item['title'], basePath+'/title.wav') # 生成每句内容音频 for j in range(len(item['sentences'])): sitem = item['sentences'][j] self.text2audio(sitem['sentence'], basePath+'/'+str(sitem['id'])+'.wav')def text2audio(self, text, path): text = self.dealText(text) self.voice_cloning(text, path)#self.tts(text=text, output=path)
音色克隆
能够当时将不同音色音频搁置在 /work/sounds 目录下。此处音色克隆局部的性能次要参考自PaddleSpeech语音克隆我的项目。
我的项目链接
https://aistudio.baidu.com/aistudio/projectdetail/4265795?channelType=0&channel=0
def clone_pre(self): # Init body. with open(self.am_config) as f: am_config = CfgNode(yaml.safe_load(f)) self.am_config_ = am_config with open(self.voc_config) as f: voc_config = CfgNode(yaml.safe_load(f)) # speaker encoder p = SpeakerVerificationPreprocessor( sampling_rate=16000, audio_norm_target_dBFS=-30, vad_window_length=30, vad_moving_average_width=8, vad_max_silence_length=6, mel_window_length=25, mel_window_step=10, n_mels=40, partial_n_frames=160, min_pad_coverage=0.75, partial_overlap_ratio=0.5) print("Audio Processor Done!") self.p = p speaker_encoder = LSTMSpeakerEncoder( n_mels=40, num_layers=3, hidden_size=256, output_size=256) speaker_encoder.set_state_dict(paddle.load(self.ge2e_params_path)) speaker_encoder.eval() self.speaker_encoder = speaker_encoder print("GE2E Done!") with open(self.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) # acoustic model odim = am_config.n_mels # model: {model_name}_{dataset} am_name = self.am[:self.am.rindex('_')] am_dataset = self.am[self.am.rindex('_') + 1:] am_class = dynamic_import(am_name, self.model_alias) am_inference_class = dynamic_import( am_name + '_inference', self.model_alias) if am_name == 'fastspeech2': am = am_class( idim=vocab_size, odim=odim, spk_num=None, **am_config["model"]) elif am_name == 'tacotron2': am = am_class(idim=vocab_size, odim=odim, **am_config["model"]) am.set_state_dict(paddle.load(self.am_ckpt)["main_params"]) am.eval() am_mu, am_std = np.load(self.am_stat) am_mu = paddle.to_tensor(am_mu) am_std = paddle.to_tensor(am_std) am_normalizer = ZScore(am_mu, am_std) am_inference = am_inference_class(am_normalizer, am) am_inference.eval() self.am_inference = am_inference print("acoustic model done!") # vocoder # model: {model_name}_{dataset} voc_name = self.voc[:self.voc.rindex('_')] voc_class = dynamic_import(voc_name, self.model_alias) voc_inference_class = dynamic_import( voc_name + '_inference', self.model_alias) voc = voc_class(**voc_config["generator_params"]) voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"]) voc.remove_weight_norm() voc.eval() voc_mu, voc_std = np.load(self.voc_stat) voc_mu = paddle.to_tensor(voc_mu) voc_std = paddle.to_tensor(voc_std) voc_normalizer = ZScore(voc_mu, voc_std) voc_inference = voc_inference_class(voc_normalizer, voc) voc_inference.eval() self.voc_inference = voc_inference print("voc done!") self.frontend = Frontend(phone_vocab_path=self.phones_dict) print("frontend done!") # 获取音色 ref_audio_path = self.soundsInput+'/'+str(self.sound)+'.mp3' mel_sequences = self.p.extract_mel_partials(self.p.preprocess_wav(ref_audio_path)) # print("mel_sequences: ", mel_sequences.shape) with paddle.no_grad(): spk_emb = self.speaker_encoder.embed_utterance(paddle.to_tensor(mel_sequences)) # print("spk_emb shape: ", spk_emb.shape) self.spk_emb = spk_embdef voice_cloning(self, text, path): input_ids = self.frontend.get_input_ids(text, merge_sentences=True) phone_ids = input_ids["phone_ids"][0] with paddle.no_grad(): wav = self.voc_inference(self.am_inference(phone_ids, spk_emb=self.spk_emb)) sf.write(path, wav.numpy(), samplerate=self.am_config_.fs)
语速和音量调整
def post_del(self, path): old_au = AudioFileClip(path) new_au = old_au.fl_time(lambda t: self.speed*t, apply_to=['mask', 'audio']) new_au = new_au.set_duration(old_au.duration/self.speed) new_au = (new_au.fx(afx.volumex, self.volumex)) final_path = path.replace('outputs','final') print(path, final_path) new_au.write_audiofile(final_path) print('^^^^^^')
音色、语速和音量须要在 main.py 的头部中设置。
class Main(object): def __init__(self): self.bookPathInput = './books/inputs' # 书籍输出目录 self.bookPathOutput = './books/outputs' # 惯例输入目录 self.bookPathFinal = './books/final' # 最终输入目录 self.bookname = 'sanguoyanyi' self.tts = None self.soundsInput = './sounds' # 音色文件寄存目录 self.sound = '001' # 音色编号 self.speed = 1.0 # 语速 self.volumex = 1.1 # 音量# 音频合成,一键命令%cd /home/aistudio/work/!python main.py
查看生成后果
最终切分好的数据在
/work/outputs/sanguoyanyi目录下,原始语速和音量音频在outputs目录下,指定语速和音量音频在final目录下。其中的outputs.txt为切分内容,而音频会依照每个章节以及每个章节的句子索引排序好。
以下为outputs.txt 内容:
{ “name”: “三国演义”, “lists”: [{ “id”: 0, “title”: “第一回 宴桃园俊杰三结义 斩黄巾英雄首犯罪”, “sentence”: [{ “id”: 0 “sentence”: “滚滚长江东逝水,浪花淘尽英雄”, “end”: 0 }, { “id”: 1, “sentence”: “是否成败转头空”, “end”: 0 }, { “id”: 2, “sentence”: “青山仍旧在,几度夕阳红”, “end”: 0 }, { “id”: 3, “sentence”: “白发渔樵江渚上,惯看秋月春风”, “end”: 0}, { “id”: 4, “sentence”: “一壶浊酒喜相逢”, “end”: 0}, {
以下为第一回的每个句子wav格局音频。
客户端展现
输入第三局部生成好的内容和音频。这里用H5页面简略展现一下有声书浏览的成果,包含内容展现和逐句朗诵高亮两种性能。
[video(video-pUpZJ8ZD-1678071814221)(type-csdn)(url-https://live.csdn.net/v/embed/280333)(image-https://video-community.csdnimg.cn/vod-84deb4/5a4f23f0bbc971e...)(title-用PaddleSpeech实现有声书浏览)]
H5的具体代码已放在GitHub 上,大家可在下方链接中查看
https://github.com/lvsh2012/book2audio
手机或者PC也可间接体验
https://book.weixin12306.com/
总结
通过PaddleSpeech能够简略疾速地实现语音合成性能,轻松实现书籍有声化。使用者在这里须要关注下,当以H5展现播放成果时,须要留神内容和音频的对应关系。除了语音合成性能外,PaddleSpeech还提供了包含语音辨认、声纹提取、标点复原等其余性能。置信大家基于PaddleSpeech能够在该畛域挖掘出更多的可能性!