前言
Druid是阿里开源的数据库连接池,是阿里监控零碎Dragoon的副产品,提供了弱小的可监控性和基于Filter-Chain的可扩展性。
本篇文章将对Druid数据库连接池的连贯创立和销毁进行剖析。剖析Druid数据库连接池的源码前,须要明确几个概念。
- Druid数据库连接池中可用的连贯寄存在一个数组connections中;
- Druid数据库连接池做并发管制,次要靠一把可重入锁以及和这把锁关联的两个Condition对象;
public DruidAbstractDataSource(boolean lockFair) { lock = new ReentrantLock(lockFair); notEmpty = lock.newCondition(); empty = lock.newCondition();}
- 连接池没有可用连贯时,利用线程会在notEmpty上期待,连接池已满时,生产连贯的线程会在empty上期待;
- 对连贯保活,就是每距离肯定工夫,对达到了保活距离周期的连贯进行有效性校验,能够将有效连贯销毁,也能够避免连贯长时间不与数据库服务端通信。
Druid版本:1.2.11
注释
一. DruidDataSource连贯创立
DruidDataSource连贯的创立由CreateConnectionThread线程实现,其run() 办法如下所示。
public void run() { initedLatch.countDown(); long lastDiscardCount = 0; int errorCount = 0; for (; ; ) { try { lock.lockInterruptibly(); } catch (InterruptedException e2) { break; } long discardCount = DruidDataSource.this.discardCount; boolean discardChanged = discardCount - lastDiscardCount > 0; lastDiscardCount = discardCount; try { // emptyWait为true示意生产连接线程须要期待,无需生产连贯 boolean emptyWait = true; // 产生了创立谬误,且池中已无连贯,且抛弃连贯的统计没有扭转 // 此时生产连接线程须要生产连贯 if (createError != null && poolingCount == 0 && !discardChanged) { emptyWait = false; } if (emptyWait && asyncInit && createCount < initialSize) { emptyWait = false; } if (emptyWait) { // 池中已有连接数大于等于正在期待连贯的利用线程数 // 且以后是非keepAlive场景 // 且以后是非间断失败 // 此时生产连贯的线程在empty上期待 // keepAlive && activeCount + poolingCount < minIdle时会在shrink()办法中触发emptySingal()来增加连贯 // isFailContinuous()返回true示意间断失败,即屡次(默认2次)创立物理连贯失败 if (poolingCount >= notEmptyWaitThreadCount && (!(keepAlive && activeCount + poolingCount < minIdle)) && !isFailContinuous() ) { empty.await(); } // 避免创立超过maxActive数量的连贯 if (activeCount + poolingCount >= maxActive) { empty.await(); continue; } } } catch (InterruptedException e) { // 省略 } finally { lock.unlock(); } PhysicalConnectionInfo connection = null; try { connection = createPhysicalConnection(); } catch (SQLException e) { LOG.error("create connection SQLException, url: " + jdbcUrl + ", errorCode " + e.getErrorCode() + ", state " + e.getSQLState(), e); errorCount++; if (errorCount > connectionErrorRetryAttempts && timeBetweenConnectErrorMillis > 0) { // 屡次创立失败 setFailContinuous(true); // 如果配置了疾速失败,就唤醒所有在notEmpty上期待的利用线程 if (failFast) { lock.lock(); try { notEmpty.signalAll(); } finally { lock.unlock(); } } if (breakAfterAcquireFailure) { break; } try { Thread.sleep(timeBetweenConnectErrorMillis); } catch (InterruptedException interruptEx) { break; } } } catch (RuntimeException e) { LOG.error("create connection RuntimeException", e); setFailContinuous(true); continue; } catch (Error e) { LOG.error("create connection Error", e); setFailContinuous(true); break; } if (connection == null) { continue; } // 把连贯增加到连接池 boolean result = put(connection); if (!result) { JdbcUtils.close(connection.getPhysicalConnection()); LOG.info("put physical connection to pool failed."); } errorCount = 0; if (closing || closed) { break; } }}
CreateConnectionThread的run() 办法整体就是在一个死循环中一直的期待,被唤醒,而后创立线程。当一个物理连贯被创立进去后,会调用DruidDataSource#put办法将其放到连接池connections中,put() 办法源码如下所示。
protected boolean put(PhysicalConnectionInfo physicalConnectionInfo) { DruidConnectionHolder holder = null; try { holder = new DruidConnectionHolder(DruidDataSource.this, physicalConnectionInfo); } catch (SQLException ex) { // 省略 return false; } return put(holder, physicalConnectionInfo.createTaskId, false);}private boolean put(DruidConnectionHolder holder, long createTaskId, boolean checkExists) { // 波及到连接池中连贯数量扭转的操作,都须要加锁 lock.lock(); try { if (this.closing || this.closed) { return false; } // 池中已有连接数曾经大于等于最大连接数,则不再把连贯加到连接池并间接返回false if (poolingCount >= maxActive) { if (createScheduler != null) { clearCreateTask(createTaskId); } return false; } // 查看反复增加 if (checkExists) { for (int i = 0; i < poolingCount; i++) { if (connections[i] == holder) { return false; } } } // 连贯放入连接池 connections[poolingCount] = holder; // poolingCount++ incrementPoolingCount(); if (poolingCount > poolingPeak) { poolingPeak = poolingCount; poolingPeakTime = System.currentTimeMillis(); } // 唤醒在notEmpty上期待连贯的利用线程 notEmpty.signal(); notEmptySignalCount++; if (createScheduler != null) { clearCreateTask(createTaskId); if (poolingCount + createTaskCount < notEmptyWaitThreadCount && activeCount + poolingCount + createTaskCount < maxActive) { emptySignal(); } } } finally { lock.unlock(); } return true;}
put() 办法会先将物理连贯从PhysicalConnectionInfo中获取进去并封装成一个DruidConnectionHolder,DruidConnectionHolder就是Druid连接池中的连贯。新增加的连贯会寄存在连接池数组connections的poolingCount地位,而后poolingCount会加1,也就是poolingCount代表着连接池中能够获取的连贯的数量。
二. DruidDataSource连贯销毁
DruidDataSource连贯的销毁由DestroyConnectionThread线程实现,其run() 办法如下所示。
public void run() { // run()办法只有执行了,就调用initedLatch#countDown initedLatch.countDown(); for (; ; ) { // 每距离timeBetweenEvictionRunsMillis执行一次DestroyTask的run()办法 try { if (closed || closing) { break; } if (timeBetweenEvictionRunsMillis > 0) { Thread.sleep(timeBetweenEvictionRunsMillis); } else { Thread.sleep(1000); } if (Thread.interrupted()) { break; } // 执行DestroyTask的run()办法来销毁须要销毁的连贯 destroyTask.run(); } catch (InterruptedException e) { break; } }}
DestroyConnectionThread的run() 办法就是在一个死循环中每距离timeBetweenEvictionRunsMillis的工夫就执行一次DestroyTask的run() 办法。DestroyTask#run办法实现如下所示。
public void run() { // 依据一系列条件判断并销毁连贯 shrink(true, keepAlive); // RemoveAbandoned机制 if (isRemoveAbandoned()) { removeAbandoned(); }}
在DestroyTask#run办法中会调用DruidDataSource#shrink办法来依据设定的条件来判断出须要销毁和保活的连贯。DruidDataSource#shrink办法如下所示。
// checkTime参数示意在将一个连贯进行销毁前,是否须要判断一下闲暇工夫public void shrink(boolean checkTime, boolean keepAlive) { // 加锁 try { lock.lockInterruptibly(); } catch (InterruptedException e) { return; } // needFill = keepAlive && poolingCount + activeCount < minIdle // needFill为true时,会调用empty.signal()唤醒生产连贯的线程来生产连贯 boolean needFill = false; // evictCount记录须要销毁的连接数 // keepAliveCount记录须要保活的连接数 int evictCount = 0; int keepAliveCount = 0; int fatalErrorIncrement = fatalErrorCount - fatalErrorCountLastShrink; fatalErrorCountLastShrink = fatalErrorCount; try { if (!inited) { return; } // checkCount = 池中已有连接数 - 最小闲暇连接数 // 失常状况下,最多可能将前checkCount个连贯进行销毁 final int checkCount = poolingCount - minIdle; final long currentTimeMillis = System.currentTimeMillis(); // 失常状况下,须要遍历池中所有连贯 // 从前往后遍历,i为数组索引 for (int i = 0; i < poolingCount; ++i) { DruidConnectionHolder connection = connections[i]; // 如果产生了致命谬误(onFatalError == true)且致命谬误产生工夫(lastFatalErrorTimeMillis)在连贯建设工夫之后 // 把连贯退出到保活连贯数组中 if ((onFatalError || fatalErrorIncrement > 0) && (lastFatalErrorTimeMillis > connection.connectTimeMillis)) { keepAliveConnections[keepAliveCount++] = connection; continue; } if (checkTime) { // phyTimeoutMillis示意连贯的物理存活超时工夫,默认值是-1 if (phyTimeoutMillis > 0) { // phyConnectTimeMillis示意连贯的物理存活工夫 long phyConnectTimeMillis = currentTimeMillis - connection.connectTimeMillis; // 连贯的物理存活工夫大于phyTimeoutMillis,则将这个连贯放入evictConnections数组 if (phyConnectTimeMillis > phyTimeoutMillis) { evictConnections[evictCount++] = connection; continue; } } // idleMillis示意连贯的闲暇工夫 long idleMillis = currentTimeMillis - connection.lastActiveTimeMillis; // minEvictableIdleTimeMillis示意连贯容许的最小闲暇工夫,默认是30分钟 // keepAliveBetweenTimeMillis示意保活间隔时间,默认是2分钟 // 如果连贯的闲暇工夫小于minEvictableIdleTimeMillis且还小于keepAliveBetweenTimeMillis // 则connections数组中以后连贯之后的连贯都会满足闲暇工夫小于minEvictableIdleTimeMillis且还小于keepAliveBetweenTimeMillis // 此时跳出遍历,不再查看其余的连贯 if (idleMillis < minEvictableIdleTimeMillis && idleMillis < keepAliveBetweenTimeMillis ) { break; } // 连贯的闲暇工夫大于等于容许的最小闲暇工夫 if (idleMillis >= minEvictableIdleTimeMillis) { if (checkTime && i < checkCount) { // i < checkCount这个条件的了解如下: // 每次shrink()办法执行时,connections数组中只有索引0到checkCount-1的连贯才容许被销毁 // 这样能力保障销毁完连贯后,connections数组中至多还有minIdle个连贯 evictConnections[evictCount++] = connection; continue; } else if (idleMillis > maxEvictableIdleTimeMillis) { // 如果闲暇工夫过久,曾经大于了容许的最大闲暇工夫(默认7小时) // 那么无论如何都要销毁这个连贯 evictConnections[evictCount++] = connection; continue; } } // 如果开启了保活机制,且连贯闲暇工夫大于等于了保活间隔时间 // 此时将连贯退出到保活连贯数组中 if (keepAlive && idleMillis >= keepAliveBetweenTimeMillis) { keepAliveConnections[keepAliveCount++] = connection; } } else { // checkTime为false,那么前checkCount个连贯间接进行销毁,不再判断这些连贯的闲暇工夫是否超过阈值 if (i < checkCount) { evictConnections[evictCount++] = connection; } else { break; } } } // removeCount = 销毁连接数 + 保活连接数 // removeCount示意本次从connections数组中拿掉的连接数 // 注:肯定是从返回后拿,失常状况下最初minIdle个连贯是平安的 int removeCount = evictCount + keepAliveCount; if (removeCount > 0) { // [0, 1, 2, 3, 4, null, null, null] -> [3, 4, 2, 3, 4, null, null, null] System.arraycopy(connections, removeCount, connections, 0, poolingCount - removeCount); // [3, 4, 2, 3, 4, null, null, null] -> [3, 4, null, null, null, null, null, null, null] Arrays.fill(connections, poolingCount - removeCount, poolingCount, null); // 更新池中连接数 poolingCount -= removeCount; } keepAliveCheckCount += keepAliveCount; // 如果池中连接数加上沉闷连接数(借出去的连贯)小于最小闲暇连接数 // 则将needFill设为true,后续须要唤醒生产连贯的线程来生产连贯 if (keepAlive && poolingCount + activeCount < minIdle) { needFill = true; } } finally { lock.unlock(); } if (evictCount > 0) { // 遍历evictConnections数组,销毁其中的连贯 for (int i = 0; i < evictCount; ++i) { DruidConnectionHolder item = evictConnections[i]; Connection connection = item.getConnection(); JdbcUtils.close(connection); destroyCountUpdater.incrementAndGet(this); } Arrays.fill(evictConnections, null); } if (keepAliveCount > 0) { // 遍历keepAliveConnections数组,对其中的连贯做可用性校验 // 校验通过连贯就放入connections数组,没通过连贯就销毁 for (int i = keepAliveCount - 1; i >= 0; --i) { DruidConnectionHolder holer = keepAliveConnections[i]; Connection connection = holer.getConnection(); holer.incrementKeepAliveCheckCount(); boolean validate = false; try { this.validateConnection(connection); validate = true; } catch (Throwable error) { if (LOG.isDebugEnabled()) { LOG.debug("keepAliveErr", error); } } boolean discard = !validate; if (validate) { holer.lastKeepTimeMillis = System.currentTimeMillis(); boolean putOk = put(holer, 0L, true); if (!putOk) { discard = true; } } if (discard) { try { connection.close(); } catch (Exception e) { } lock.lock(); try { discardCount++; if (activeCount + poolingCount <= minIdle) { emptySignal(); } } finally { lock.unlock(); } } } this.getDataSourceStat().addKeepAliveCheckCount(keepAliveCount); Arrays.fill(keepAliveConnections, null); } // 如果needFill为true则唤醒生产连贯的线程来生产连贯 if (needFill) { lock.lock(); try { // 计算须要生产连贯的个数 int fillCount = minIdle - (activeCount + poolingCount + createTaskCount); for (int i = 0; i < fillCount; ++i) { emptySignal(); } } finally { lock.unlock(); } } else if (onFatalError || fatalErrorIncrement > 0) { lock.lock(); try { emptySignal(); } finally { lock.unlock(); } }}
在DruidDataSource#shrink办法中,外围逻辑是遍历connections数组中的连贯,并判断这些连贯是须要销毁还是须要保活。通常状况下,connections数组中的前checkCount(checkCount = poolingCount - minIdle) 个连贯是危险的,因为这些连贯只有满足了:闲暇工夫 >= minEvictableIdleTimeMillis(容许的最小闲暇工夫),那么就须要被销毁,而connections数组中的最初minIdle个连贯是绝对平安的,因为这些连贯只有在满足:闲暇工夫 > maxEvictableIdleTimeMillis(容许的最大闲暇工夫) 时,才会被销毁。这么判断的起因,次要就是须要让连接池里可能保障至多有minIdle个闲暇连贯能够让利用线程获取。
当确定好了须要销毁和须要保活的连贯后,此时会先将connections数组清理,只保留平安的连贯,这个过程示意图如下。
最初,会遍历evictConnections数组,销毁数组中的连贯,遍历keepAliveConnections数组,对其中的每个连贯做可用性校验,如果校验可用,那么就从新放回connections数组,否则销毁。
总结
连贯的创立由一个叫做CreateConnectionThread的线程实现,整体流程就是在一个死循环中一直的期待,被唤醒,而后创立连贯。每一个被创立进去的物理连贯java.sql.Connection会被封装为一个DruidConnectionHolder,而后寄存到connections数组中。
连贯的销毁由一个叫做DestroyConnectionThread的线程实现,外围逻辑是周期性的遍历connections数组中的连贯,并判断这些连贯是须要销毁还是须要保活,须要销毁的连贯最初会被物理销毁,须要保活的连贯最初会进行一次可用性校验,如果校验不通过,则进行物理销毁。