「Android」IdleHandler入门
based on Android API 28
IdleHandler,这是一种在只有当音讯队列没有音讯时或者是队列中的音讯还没有到执行工夫时才会执行的 IdleHandler,它寄存在 mPendingIdleHandlers 队列中。
/** * Callback interface for discovering when a thread is going to block * waiting for more messages. */ public static interface IdleHandler { /** * Called when the message queue has run out of messages and will now wait for more. * Return true to keep your idle handler active, false to have it removed. * 返回 true,则放弃该回调;返回 false,则移除该回调 * This may be called if there are still messages pending in the queue, * but they are all scheduled to be dispatched after the current time. */ boolean queueIdle(); }
依据正文可知:
IdleHandler 是一个回调接口,当线程中的音讯队列将要阻塞期待音讯的时候,就会回调该接口,也就是说音讯队列中的音讯都处理完毕了,没有新的音讯了,处于闲暇状态时就会回调该接口。
源码
android.os.Looper#loop
:
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); // Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' final int thresholdOverride = SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0); boolean slowDeliveryDetected = false; for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long traceTag = me.mTraceTag; long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs; if (thresholdOverride > 0) { slowDispatchThresholdMs = thresholdOverride; slowDeliveryThresholdMs = thresholdOverride; } final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0); final boolean logSlowDispatch = (slowDispatchThresholdMs > 0); final boolean needStartTime = logSlowDelivery || logSlowDispatch; final boolean needEndTime = logSlowDispatch; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0; final long dispatchEnd; try { msg.target.dispatchMessage(msg); dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (slowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); slowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. slowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
android.os.MessageQueue#next
:
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
看 MessageQueue 的源码能够发现有两处对于 IdleHandler 的申明,别离是:
- 寄存 IdleHandler 的ArrayList:mIdleHandlers
- 寄存 IdleHandler 的数组:mPendingIdleHandlers
前面的数组,它外面放的 IdleHandler 实例都是长期的,也就是每次应用完(调用了queueIdle 办法)之后,都会置空mPendingIdleHandlers[i] = null
。
大抵的流程是这样的:
- 如果本次循环拿到的 Message 为空,或者这个 Message 是一个延时的音讯而且还没到指定的触发工夫,那么,就认定以后的音讯队列为闲暇状态
- 接着就会遍历 mPendingIdleHandlers 数组(这个数组外面的元素每次都会到 mIdleHandlers 中去拿)来调用每一个IdleHandler 实例的 queueIdle 办法
- 如果这个办法返回 false ,那么这个实例就会从 mIdleHandlers 中移除,也就是当下次队列闲暇的时候,不会持续回调它的 queueIdle 办法了
解决完 IdleHandler 后会将 nextPollTimeoutMillis 设置为0,也就是不阻塞音讯队列,当然要留神这里执行的代码同样不能太耗时,因为它是同步执行的,如果太耗时必定会影响前面的 message 执行。
应用
在利用启动时,可能心愿把一些优先级没那么高的操作提早一点解决,个别会应用 Handler.postDelayed(Runnable r, long delayMillis)
来实现,然而又不晓得该提早多少工夫比拟适合,因为手机性能不同,有的性能较差可能须要提早较多,有的性能较好能够容许较少的延迟时间。所以在做我的项目性能优化的时候能够应用 IdleHandler,它在主线程闲暇时执行工作,而不影响其余工作的执行。
参考
https://zhuanlan.zhihu.com/p/...