无论是 LRU 算法还是 LFU 算法,它们在删除淘汰数据时,实际上都会依据 Redis server 的 lazyfree-lazy-eviction 配置项,来决定是否应用 Lazy Free,也就是惰性删除。
(1) 惰性删除是什么
惰性删除是 Redis 4.0 版本后提供的性能,它会应用后盾线程来执行删除数据的工作
(2) 为什么要用惰性删除
能够防止了删除操作对主线程的阻塞。
https://github.com/redis/redi...
(3) 惰性删除怎么用
(3.1) 惰性删除的配置
当 Redis server 须要启动惰性删除时,须要在redis.conf
配置文件中设置和惰性删除相干的配置项。
其中包含了四个配置项,别离对应了如下的四种场景。
lazyfree-lazy-eviction:对应缓存淘汰时的数据删除场景。
lazyfree-lazy-expire:对应过期 key 的删除场景。
lazyfree-lazy-server-del:对应会隐式进行删除操作的 server 命令执行场景。
replica-lazy-flush:对应从节点实现全量同步后,删除原有旧数据的场景。
这四个配置项的默认值都是 no。所以,如果要在缓存淘汰时启用,就须要将
lazyfree-lazy-eviction 设置为 yes。
(4) 惰性删除原理
(4.1) 被淘汰数据的删除过程
freeMemoryIfNeeded
函数(在evict.c文件中)会负责执行数据淘汰的流程。
该函数在筛选出被淘汰的键值对后,就要开始删除被淘汰的数据,这个删除过程次要分成两步。
第一步,freeMemoryIfNeeded 函数会为被淘汰的 key 创立一个 SDS 对象,而后调用 propagateExpire 函数
第二步,freeMemoryIfNeeded 函数会依据 server 是否启用了惰性删除,别离执行
// file: src/evict.c/* This function is periodically called to see if there is memory to free * according to the current "maxmemory" settings. In case we are over the * memory limit, the function will try to free some memory to return back * under the limit. * * The function returns C_OK if we are under the memory limit or if we * were over the limit, but the attempt to free memory was successful. * Otherwise if we are over the memory limit, but not enough memory * was freed to return back under the limit, the function returns C_ERR. */int freeMemoryIfNeeded(void) { int keys_freed = 0; // 省略局部代码 ... // 曾经开释的内存大小 < 打算要开释的内存大小 while (mem_freed < mem_tofree) { int j, k, i; // sds sds bestkey = NULL; // 省略局部代码 // 最终移除抉择要淘汰的key if (bestkey) { // 抉择对应的db db = server.db+bestdbid; // 创立redisObject robj *keyobj = createStringObject(bestkey,sdslen(bestkey)); // 删除 propagateExpire(db,keyobj,server.lazyfree_lazy_eviction); /* We compute the amount of memory freed by db*Delete() alone. * It is possible that actually the memory needed to propagate * the DEL in AOF and replication link is greater than the one * we are freeing removing the key, but we can't account for * that otherwise we would never exit the loop. * * Same for CSC invalidation messages generated by signalModifiedKey. * * AOF and Output buffer memory will be freed eventually so * we only care about memory used by the key space. */ delta = (long long) zmalloc_used_memory(); latencyStartMonitor(eviction_latency); // 是否惰性删除 if (server.lazyfree_lazy_eviction) dbAsyncDelete(db,keyobj); // 异步删除 else dbSyncDelete(db,keyobj); // 同步删除 latencyEndMonitor(eviction_latency); latencyAddSampleIfNeeded("eviction-del",eviction_latency); delta -= (long long) zmalloc_used_memory(); mem_freed += delta; server.stat_evictedkeys++; signalModifiedKey(NULL,db,keyobj); notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted", keyobj, db->id); decrRefCount(keyobj); keys_freed++; /* When the memory to free starts to be big enough, we may * start spending so much time here that is impossible to * deliver data to the slaves fast enough, so we force the * transmission here inside the loop. */ if (slaves) flushSlavesOutputBuffers(); /* Normally our stop condition is the ability to release * a fixed, pre-computed amount of memory. However when we * are deleting objects in another thread, it's better to * check, from time to time, if we already reached our target * memory, since the "mem_freed" amount is computed only * across the dbAsyncDelete() call, while the thread can * release the memory all the time. */ if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) { if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) { /* Let's satisfy our stop condition. */ mem_freed = mem_tofree; } } } else { goto cant_free; /* nothing to free... */ } } result = C_OK;cant_free: /* We are here if we are not able to reclaim memory. There is only one * last thing we can try: check if the lazyfree thread has jobs in queue * and wait... */ if (result != C_OK) { latencyStartMonitor(lazyfree_latency); while(bioPendingJobsOfType(BIO_LAZY_FREE)) { if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) { result = C_OK; break; } usleep(1000); } latencyEndMonitor(lazyfree_latency); latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency); } latencyEndMonitor(latency); latencyAddSampleIfNeeded("eviction-cycle",latency); return result;}
(4.1.1) 流传过期key-propagateExpire
// file: src/evict.c/* * 流传 过期keys 到 从节点 和 AOF 文件。 * 当主节点中的key过期时,如果启用(),则会将对此key的DEL操作发送到 所有从节点 和 AOF 文件。 * * 这样key过期集中在一个中央,并且因为 AOF 和 主->从 链接保障操作程序, * 即便咱们容许对过期key进行写操作,所有也会保持一致。 * * @param *db redisDb * @param *key 过期key对象(redisObject格局) * @param lazy 过期策略 */void propagateExpire(redisDb *db, robj *key, int lazy) { robj *argv[2]; argv[0] = lazy ? shared.unlink : shared.del; argv[1] = key; // 援用计数 +1 incrRefCount(argv[0]); // 援用计数 +1 incrRefCount(argv[1]); // AOF未敞开 if (server.aof_state != AOF_OFF) feedAppendOnlyFile(server.delCommand,db->id,argv,2); // 把删除命令追加到AOF缓存 // 将删除操作同步给从节点 replicationFeedSlaves(server.slaves,db->id,argv,2); // 援用计数 -1 decrRefCount(argv[0]); // 援用计数 -1 decrRefCount(argv[1]);}
(4.1.2) 惰性删除-dbAsyncDelete
// file: src/evict.c/**/int freeMemoryIfNeeded(void) { // 省略局部代码 // 是否惰性删除 if (server.lazyfree_lazy_eviction) dbAsyncDelete(db,keyobj); // 异步删除 else dbSyncDelete(db,keyobj); // 同步删除 // 省略局部代码}
(4.2) 数据异步删除-dbAsyncDelete
// file: src/lazyfree.c// 从数据库中删除key、value 和 关联的过期entry(如果有)。// 如果有足够的内存调配来开释值对象,则能够将其放入惰性开释列表而不是同步开释。 // 惰性闲暇列表将在不同的 bio.c 线程中回收。#define LAZYFREE_THRESHOLD 64/* * 异步删除 * * @param *db * @param *key */int dbAsyncDelete(redisDb *db, robj *key) { // 从 expires 字典中删除entry(dictEntry)不会开释key的sds,因为它与主字典共享。 // 须要删2次,第一次删entry(dictEntry),第二次删key if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); // 如果该值由一些allocations组成,以惰性形式开释实际上会更慢...所以在肯定限度下咱们只是同步开释对象。 // 从字典里删除key dictEntry *de = dictUnlink(db->dict,key->ptr); // 如果节点不为空 if (de) { // 获取节点的值 robj *val = dictGetVal(de); // size_t free_effort = lazyfreeGetFreeEffort(val); /* If releasing the object is too much work, do it in the background * by adding the object to the lazy free list. * Note that if the object is shared, to reclaim it now it is not * possible. This rarely happens, however sometimes the implementation * of parts of the Redis core may call incrRefCount() to protect * objects, and then call dbDelete(). In this case we'll fall * through and reach the dictFreeUnlinkedEntry() call, that will be * equivalent to just calling decrRefCount(). */ if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) { atomicIncr(lazyfree_objects,1); bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL); dictSetVal(db->dict,de,NULL); } } /* Release the key-val pair, or just the key if we set the val * field to NULL in order to lazy free it later. */ if (de) { dictFreeUnlinkedEntry(db->dict,de); if (server.cluster_enabled) slotToKeyDel(key->ptr); return 1; } else { return 0; }}
/* Return the amount of work needed in order to free an object. * The return value is not always the actual number of allocations the * object is composed of, but a number proportional to it. * * For strings the function always returns 1. * * For aggregated objects represented by hash tables or other data structures * the function just returns the number of elements the object is composed of. * * Objects composed of single allocations are always reported as having a * single item even if they are actually logical composed of multiple * elements. * * For lists the function returns the number of elements in the quicklist * representing the list. */size_t lazyfreeGetFreeEffort(robj *obj) { if (obj->type == OBJ_LIST) { quicklist *ql = obj->ptr; return ql->len; } else if (obj->type == OBJ_SET && obj->encoding == OBJ_ENCODING_HT) { dict *ht = obj->ptr; return dictSize(ht); } else if (obj->type == OBJ_ZSET && obj->encoding == OBJ_ENCODING_SKIPLIST){ zset *zs = obj->ptr; return zs->zsl->length; } else if (obj->type == OBJ_HASH && obj->encoding == OBJ_ENCODING_HT) { dict *ht = obj->ptr; return dictSize(ht); } else if (obj->type == OBJ_STREAM) { size_t effort = 0; stream *s = obj->ptr; /* Make a best effort estimate to maintain constant runtime. Every macro * node in the Stream is one allocation. */ effort += s->rax->numnodes; /* Every consumer group is an allocation and so are the entries in its * PEL. We use size of the first group's PEL as an estimate for all * others. */ if (s->cgroups && raxSize(s->cgroups)) { raxIterator ri; streamCG *cg; raxStart(&ri,s->cgroups); raxSeek(&ri,"^",NULL,0); /* There must be at least one group so the following should always * work. */ serverAssert(raxNext(&ri)); cg = ri.data; effort += raxSize(s->cgroups)*(1+raxSize(cg->pel)); raxStop(&ri); } return effort; } else { return 1; /* Everything else is a single allocation. */ }}
(5) 参考资料
https://weikeqin.com/tags/redis/
Redis源码分析与实战 学习笔记 Day17 Lazy Free会影响缓存替换吗?
https://time.geekbang.org/col...