一.Pushgateway是什么
pushgatway是prometheus社区推出的一个推送指标的组件,次要利用在:
- 短生命周期(short-lived)或者批工作(batch jobs)的资源/作业的指标;
- prometheus无奈拉取到(网络起因)的target的指标;
作业工作能够将指标通过HTTP API推送给pushgateway,而后由prometheus拉取pushgateway的指标。
二.Pushgateway如何应用
1.装置启动pushgateway
# wget https://github.com/prometheus/pushgateway/releases/download/v1.2.0/pushgateway-1.2.0.linux-amd64.tar.gz# ./pushgateway --web.listen-address=":9099"
2.配置pushgateway被prometheus拉取
scrape_configs: - job_name: 'pushgateway' static_configs: - targets: ['127.0.0.1:9099']
3.向pushgateway发送数据
这里通过shell,调用pushgateway的HTTP接口,发送数据:
#!/bin/bashinstance_name=`hostname -f | cut -d'.' -f1`if [ $instance_name == "localhost" ];then echo "Must FQDN hostname" exit 1fi# For waitting connectionslabel="count_netstat_wait_connections"count_netstat_wait_connections=`netstat -an | grep -i wait | wc -l`cat <<EOF | curl --data-binary @- http://127.0.0.1:9099/metrics/job/pushgateway/instance/$instance_name# TYPE $label gauge# HELP $label current connection in wait state$label $count_netstat_wait_connectionsEOF
查问本机中处于wait状态的网络连接数,而后发送给pushgateway:
# ./net_exporter_shell.sh
4.prometheus UI验证数据正确接管&拉取
首先,看一下pushgateway的/metrics是否有咱们定义的指标:
# curl http://127.0.0.1:9099/metrics# HELP count_netstat_wait_connections current connection in wait state# TYPE count_netstat_wait_connections gaugecount_netstat_wait_connections{instance="dev",job="pushgateway"} 0...
而后,再看prometheus UI上是否能够查问到该指标:
三.Pushgateway的源码剖析
pushgateway的源码:https://github.com/prometheus...
1.指标推送的API:
// pushgateway/main.gofunc main() { ... // Handlers for pushing and deleting metrics. pushAPIPath := *routePrefix + "/metrics" for _, suffix := range []string{"", handler.Base64Suffix} { jobBase64Encoded := suffix == handler.Base64Suffix // URL中的labels被解析为jobname,instance r.Post(pushAPIPath+"/job"+suffix+"/:job/*labels", handler.Push(ms, false, !*pushUnchecked, jobBase64Encoded, logger)) ... } ...}
推送的逻辑在handler.Push(...)
// pushgateway/handler/push.gofunc Push( ms storage.MetricStore, replace, check, jobBase64Encoded bool, logger log.Logger,) func(http.ResponseWriter, *http.Request) { handler := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { job := route.Param(r.Context(), "job") // 解析URL中labels labelsString := route.Param(r.Context(), "labels") labels, err := splitLabels(labelsString) labels["job"] = job // 解析request body中的text,解析成prom格局的metric var parser expfmt.TextParser metricFamilies, err = parser.TextToMetricFamilies(r.Body) if !check { // 将指标存入到storage.MetricStore ms.SubmitWriteRequest(storage.WriteRequest{ Labels: labels, Timestamp: now, MetricFamilies: metricFamilies, Replace: replace, }) w.WriteHeader(http.StatusAccepted) return } } instrumentedHandler := promhttp.InstrumentHandlerRequestSize( httpPushSize, promhttp.InstrumentHandlerDuration( httpPushDuration, InstrumentWithCounter("push", handler), )) return func(w http.ResponseWriter, r *http.Request) { mtx.Lock() instrumentedHandler.ServeHTTP(w, r) }}
看一下storage.MetricStore存储指标的逻辑:
// pushgateway/storage/diskmetricstore.gofunc (dms *DiskMetricStore) SubmitWriteRequest(req WriteRequest) { dms.writeQueue <- req // 写入channel}
dms中有一个loop解决channel中的数据:
// pushgateway/storage/diskmetricstore.gofunc (dms *DiskMetricStore) loop(persistenceInterval time.Duration) { ... for { select { case wr := <-dms.writeQueue: lastWrite = time.Now() if dms.checkWriteRequest(wr) { dms.processWriteRequest(wr) } ... }}
// pushgateway/storage/diskmetricstore.gofunc (dms *DiskMetricStore) processWriteRequest(wr WriteRequest) { key := groupingKeyFor(wr.Labels) group, ok := dms.metricGroups[key] if !ok { group = MetricGroup{ Labels: wr.Labels, Metrics: NameToTimestampedMetricFamilyMap{}, } dms.metricGroups[key] = group } ...}
能够看到,指标最终被写入dms.metricGroups中,它是一个map构造:
// pushgateway/storage/diskmetricstore.gotype DiskMetricStore struct { ... metricGroups GroupingKeyToMetricGroup}// 内存的map构造type GroupingKeyToMetricGroup map[string]MetricGroup
2.指标查问的API:/metrics
// pushgateway/main.gofunc main() { ... r.Get("/metrics", wrap("api/v1/metrics", api.metrics)) }
API的handler解决:
- 从metricStorage中获取所有的指标;
- 将指标组装后返回client;
// pushgateway/api/v1/api.gofunc (api *API) metrics(w http.ResponseWriter, r *http.Request) { // 从storage.MetricStorage中获取所有的 familyMaps := api.MetricStore.GetMetricFamiliesMap() res := []interface{}{} for _, v := range familyMaps { metricResponse := map[string]interface{}{} for name, metricValues := range v.Metrics { .... } res = append(res, metricResponse) } api.respond(w, res) // 返回client}
查DiskMetricStore的时候,查问的是外面的metricGroups内容,也是上一步中咱们push指标的目的地:
// pushgateway/storage/diskmetricstore.gofunc (dms *DiskMetricStore) GetMetricFamiliesMap() GroupingKeyToMetricGroup { ... groupsCopy := make(GroupingKeyToMetricGroup, len(dms.metricGroups)) for k, g := range dms.metricGroups { ... } return groupsCopy}
3.总结
- 推送指标:最新的指标被存入DiskMetricStore.metricGroup;
- 查问指标:查问DiskMetricStore.metricGroup中最新的值;
四.Pushgateway的最佳实际
pushgateway官网强调的是,不能应用pushgateway将prometheus变成一个push模型:
First of all, the Pushgateway is not capable of turning Prometheus into a push-based monitoring system.
pushgateway官网认为,pushgateway的最佳用处是:抓取服务层的批工作的指标
- 服务层的批工作:sevice-level batch job,意味着它跟具体instance/job都无关;
Usually, the only valid use case for the Pushgateway is for capturing the outcome of a service-level batch job. A "service-level" batch job is one which is not semantically related to a specific machine or job instance (for example, a batch job that deletes a number of users for an entire service).
此外,pushgateway在应用时,有一些弱点。
1. pushgateway的应用弱点一
当作业服务不再向pushgateway推送指标时,依然能够从pushgateway的/metrics接口中,查问到过期的数据。
比方:
- targetA在12:01:00向pushgateway推送metricA指标;
- targetA在12:01:10服务宕机,不再推送指标;
通过pushgateway的/metrics接口:
- 在12:01:10之后,依然能够查到metricA指标,始终不会过期;
- 即12:02:00、12:03:00、...、12:30:00都能够查问到metricA指标;
社区对此问题的解释:
A while ago, we decided to not implement a “timeout” or TTL for pushed metrics because almost all proposed use cases turned out to be anti-patterns we strongly discourage. You can follow a more recent discussion on the prometheus-developers mailing list.
解决该问题的一个办法是,能够通过pushgateway的Delete接口,被动删除该target的指标,这样/metrics接口就查不到了:
curl -X DELETE http://127.0.0.1:9099/metrics/job/some_job/instance/some_instance
2. pushgateway的应用弱点二
假如target上报指标的工夫=t1,prometheus拉取pushgatway的工夫=t2,无奈保障t1和t2在同一个拉取周期中,也就是无奈保障prometheus能够拉取到最新的数据。
比方:
- target的上报周期=30s,最近一次在12:00:20上报,下一次在12:00:50上报;
- prometheus的拉取周期=30s,最近一次在12:00:10拉取,下一次在12:00:40拉取;
- 也就是说,prometheus拉取的总是target上个周期的数据;
社区对该问题的解释:
As there aren't any use cases where it would make sense to attach a different timestamp, and many users attempting to incorrectly do so (despite no client library supporting this), the Pushgateway rejects any pushes with timestamps.
If you think you need to push a timestamp, please see When To Use The Pushgateway.
参考
1.https://prometheus.io/docs/pr...
2.https://github.com/prometheus...