2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的无力竞争对手,卷积神经网络目前是计算机视觉畛域的最先进技术,广泛应用于许多图像识别利用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)简直四倍。

ViT是如何工作的?

ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 规范 ViT stem 采纳 16 *16 卷积和 16 步长。

CNN 将原始像素转换为特色图。而后,tokenizer 将特色图转换为一系列令牌,这些令牌随后被送入transformer。而后transformer应用注意力办法生成一系列输入令牌。

projector 最终将输入令牌标记从新连贯到特色图。

vision transformer模型的整体架构如下:

  • 将图像拆分为补丁(固定大小)
  • 展平图像块
  • 从这些展平的图像块中创立低维线性嵌入
  • 包含地位嵌入
  • 将序列作为输出发送到transformer编码器
  • 应用图像标签预训练 ViT 模型,而后在宽泛的数据集上进行训练
  • 在图像分类的上游数据集进行微调

可视化注意力

ViT中最次要的就是注意力机制,所以可视化注意力就成为理解ViT的重要步骤,所以咱们这里介绍如何可视化ViT中的注意力

导入库

 importos importtorch importnumpyasnp importmath fromfunctoolsimportpartial importtorch importtorch.nnasnn  importipywidgetsaswidgets importio fromPILimportImage fromtorchvisionimporttransforms importmatplotlib.pyplotasplt importnumpyasnp fromtorchimportnn  importwarnings warnings.filterwarnings("ignore")

创立一个VIT

 deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):     # type: (Tensor, float, float, float, float) -> Tensor     return_no_grad_trunc_normal_(tensor, mean, std, a, b)   def_no_grad_trunc_normal_(tensor, mean, std, a, b):     # Cut & paste from PyTorch official master until it's in a few official releases - RW     # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf     defnorm_cdf(x):         # Computes standard normal cumulative distribution function         return (1.+math.erf(x/math.sqrt(2.))) /2.   defdrop_path(x, drop_prob: float=0., training: bool=False):     ifdrop_prob==0.ornottraining:         returnx     keep_prob=1-drop_prob     # work with diff dim tensors, not just 2D ConvNets     shape= (x.shape[0],) + (1,) * (x.ndim-1)     random_tensor=keep_prob+ \         torch.rand(shape, dtype=x.dtype, device=x.device)     random_tensor.floor_()  # binarize     output=x.div(keep_prob) *random_tensor     returnoutput   classDropPath(nn.Module):     """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).     """      def__init__(self, drop_prob=None):         super(DropPath, self).__init__()         self.drop_prob=drop_prob      defforward(self, x):         returndrop_path(x, self.drop_prob, self.training)   classMlp(nn.Module):     def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):         super().__init__()         out_features=out_featuresorin_features         hidden_features=hidden_featuresorin_features         self.fc1=nn.Linear(in_features, hidden_features)         self.act=act_layer()         self.fc2=nn.Linear(hidden_features, out_features)         self.drop=nn.Dropout(drop)      defforward(self, x):         x=self.fc1(x)         x=self.act(x)         x=self.drop(x)         x=self.fc2(x)         x=self.drop(x)         returnx   classAttention(nn.Module):     def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):         super().__init__()         self.num_heads=num_heads         head_dim=dim//num_heads         self.scale=qk_scaleorhead_dim**-0.5          self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias)         self.attn_drop=nn.Dropout(attn_drop)         self.proj=nn.Linear(dim, dim)         self.proj_drop=nn.Dropout(proj_drop)      defforward(self, x):         B, N, C=x.shape         qkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C//                                   self.num_heads).permute(2, 0, 3, 1, 4)         q, k, v=qkv[0], qkv[1], qkv[2]          attn= (q@k.transpose(-2, -1)) *self.scale         attn=attn.softmax(dim=-1)         attn=self.attn_drop(attn)          x= (attn@v).transpose(1, 2).reshape(B, N, C)         x=self.proj(x)         x=self.proj_drop(x)         returnx, attn   classBlock(nn.Module):     def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                  drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):         super().__init__()         self.norm1=norm_layer(dim)         self.attn=Attention(             dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)         self.drop_path=DropPath(             drop_path) ifdrop_path>0.elsenn.Identity()         self.norm2=norm_layer(dim)         mlp_hidden_dim=int(dim*mlp_ratio)         self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim,                        act_layer=act_layer, drop=drop)      defforward(self, x, return_attention=False):         y, attn=self.attn(self.norm1(x))         ifreturn_attention:             returnattn         x=x+self.drop_path(y)         x=x+self.drop_path(self.mlp(self.norm2(x)))         returnx   classPatchEmbed(nn.Module):     """ Image to Patch Embedding     """      def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):         super().__init__()         num_patches= (img_size//patch_size) * (img_size//patch_size)         self.img_size=img_size         self.patch_size=patch_size         self.num_patches=num_patches          self.proj=nn.Conv2d(in_chans, embed_dim,                               kernel_size=patch_size, stride=patch_size)      defforward(self, x):         B, C, H, W=x.shape         x=self.proj(x).flatten(2).transpose(1, 2)         returnx   classVisionTransformer(nn.Module):     """ Vision Transformer """      def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,                  num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,                  drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):         super().__init__()         self.num_features=self.embed_dim=embed_dim          self.patch_embed=PatchEmbed(             img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)         num_patches=self.patch_embed.num_patches          self.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim))         self.pos_embed=nn.Parameter(             torch.zeros(1, num_patches+1, embed_dim))         self.pos_drop=nn.Dropout(p=drop_rate)          # stochastic depth decay rule         dpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)]         self.blocks=nn.ModuleList([             Block(                 dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,                 drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)             foriinrange(depth)])         self.norm=norm_layer(embed_dim)          # Classifier head         self.head=nn.Linear(             embed_dim, num_classes) ifnum_classes>0elsenn.Identity()          trunc_normal_(self.pos_embed, std=.02)         trunc_normal_(self.cls_token, std=.02)         self.apply(self._init_weights)      def_init_weights(self, m):         ifisinstance(m, nn.Linear):             trunc_normal_(m.weight, std=.02)             ifisinstance(m, nn.Linear) andm.biasisnotNone:                 nn.init.constant_(m.bias, 0)         elifisinstance(m, nn.LayerNorm):             nn.init.constant_(m.bias, 0)             nn.init.constant_(m.weight, 1.0)      definterpolate_pos_encoding(self, x, w, h):         npatch=x.shape[1] -1         N=self.pos_embed.shape[1] -1         ifnpatch==Nandw==h:             returnself.pos_embed         class_pos_embed=self.pos_embed[:, 0]         patch_pos_embed=self.pos_embed[:, 1:]         dim=x.shape[-1]         w0=w//self.patch_embed.patch_size         h0=h//self.patch_embed.patch_size         # we add a small number to avoid floating point error in the interpolation         # see discussion at https://github.com/facebookresearch/dino/issues/8         w0, h0=w0+0.1, h0+0.1         patch_pos_embed=nn.functional.interpolate(             patch_pos_embed.reshape(1, int(math.sqrt(N)), int(                 math.sqrt(N)), dim).permute(0, 3, 1, 2),             scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)),             mode='bicubic',         )         assertint(             w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1]         patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)         returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)      defprepare_tokens(self, x):         B, nc, w, h=x.shape         x=self.patch_embed(x)  # patch linear embedding          # add the [CLS] token to the embed patch tokens         cls_tokens=self.cls_token.expand(B, -1, -1)         x=torch.cat((cls_tokens, x), dim=1)          # add positional encoding to each token         x=x+self.interpolate_pos_encoding(x, w, h)          returnself.pos_drop(x)      defforward(self, x):         x=self.prepare_tokens(x)         forblkinself.blocks:             x=blk(x)         x=self.norm(x)         returnx[:, 0]      defget_last_selfattention(self, x):         x=self.prepare_tokens(x)         fori, blkinenumerate(self.blocks):             ifi<len(self.blocks) -1:                 x=blk(x)             else:                 # return attention of the last block                 returnblk(x, return_attention=True)      defget_intermediate_layers(self, x, n=1):         x=self.prepare_tokens(x)         # we return the output tokens from the `n` last blocks         output= []         fori, blkinenumerate(self.blocks):             x=blk(x)             iflen(self.blocks) -i<=n:                 output.append(self.norm(x))         returnoutput   classVitGenerator(object):     def__init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False):         self.name_model=name_model         self.patch_size=patch_size         self.evaluate=evaluate         self.device=device         self.verbose=verbose         self.model=self._getModel()         self._initializeModel()         ifnotrandom:             self._loadPretrainedWeights()      def_getModel(self):         ifself.verbose:             print(                 f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}")         ifself.name_model=='vit_tiny':             model=VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))          elifself.name_model=='vit_small':             model=VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))          elifself.name_model=='vit_base':             model=VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))         else:             raisef"No model found with {self.name_model}"          returnmodel      def_initializeModel(self):         ifself.evaluate:             forpinself.model.parameters():                 p.requires_grad=False              self.model.eval()          self.model.to(self.device)      def_loadPretrainedWeights(self):         ifself.verbose:             print("[INFO] Loading weights")         url=None         ifself.name_model=='vit_small'andself.patch_size==16:             url="dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"          elifself.name_model=='vit_small'andself.patch_size==8:             url="dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"          elifself.name_model=='vit_base'andself.patch_size==16:             url="dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"          elifself.name_model=='vit_base'andself.patch_size==8:             url="dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"          ifurlisNone:             print(                 f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used")          else:             state_dict=torch.hub.load_state_dict_from_url(                 url="https://dl.fbaipublicfiles.com/dino/"+url)             self.model.load_state_dict(state_dict, strict=True)      defget_last_selfattention(self, img):         returnself.model.get_last_selfattention(img.to(self.device))      def__call__(self, x):         returnself.model(x)

创立可视化函数

 deftransform(img, img_size):     img=transforms.Resize(img_size)(img)     img=transforms.ToTensor()(img)     returnimg   defvisualize_predict(model, img, img_size, patch_size, device):     img_pre=transform(img, img_size)     attention=visualize_attention(model, img_pre, patch_size, device)     plot_attention(img, attention)   defvisualize_attention(model, img, patch_size, device):     # make the image divisible by the patch size     w, h=img.shape[1] -img.shape[1] %patch_size, img.shape[2] - \         img.shape[2] %patch_size     img=img[:, :w, :h].unsqueeze(0)      w_featmap=img.shape[-2] //patch_size     h_featmap=img.shape[-1] //patch_size      attentions=model.get_last_selfattention(img.to(device))      nh=attentions.shape[1]  # number of head      # keep only the output patch attention     attentions=attentions[0, :, 0, 1:].reshape(nh, -1)      attentions=attentions.reshape(nh, w_featmap, h_featmap)     attentions=nn.functional.interpolate(attentions.unsqueeze(         0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()      returnattentions   defplot_attention(img, attention):     n_heads=attention.shape[0]      plt.figure(figsize=(10, 10))     text= ["Original Image", "Head Mean"]     fori, figinenumerate([img, np.mean(attention, 0)]):         plt.subplot(1, 2, i+1)         plt.imshow(fig, cmap='inferno')         plt.title(text[i])     plt.show()      plt.figure(figsize=(10, 10))     foriinrange(n_heads):         plt.subplot(n_heads//3, 3, i+1)         plt.imshow(attention[i], cmap='inferno')         plt.title(f"Head n: {i+1}")     plt.tight_layout()     plt.show()    classLoader(object):     def__init__(self):         self.uploader=widgets.FileUpload(accept='image/*', multiple=False)         self._start()      def_start(self):         display(self.uploader)      defgetLastImage(self):         try:             foruploaded_filenameinself.uploader.value:                 uploaded_filename=uploaded_filename             img=Image.open(io.BytesIO(                 bytes(self.uploader.value[uploaded_filename]['content'])))              returnimg         except:             returnNone      defsaveImage(self, path):         withopen(path, 'wb') asoutput_file:             foruploaded_filenameinself.uploader.value:                 content=self.uploader.value[uploaded_filename]['content']                 output_file.write(content)

对一个图像的注意力进行可视化

 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if device.type == "cuda":     torch.cuda.set_device(1)  name_model = 'vit_small' patch_size = 8  model = VitGenerator(name_model, patch_size,                       device, evaluate=True, random=False, verbose=True)   # Visualizing Dog Image path = '/content/corgi_image.jpg' img = Image.open(path) factor_reduce = 2 img_size = tuple(np.array(img.size[::-1]) // factor_reduce)  visualize_predict(model, img, img_size, patch_size, device)

本文代码

https://avoid.overfit.cn/post/4c0e8cb7959641eb9b92c1d5a3c7161c

作者:Aryan Jadon