2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的无力竞争对手,卷积神经网络目前是计算机视觉畛域的最先进技术,广泛应用于许多图像识别利用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)简直四倍。
ViT是如何工作的?
ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 规范 ViT stem 采纳 16 *16 卷积和 16 步长。
CNN 将原始像素转换为特色图。而后,tokenizer 将特色图转换为一系列令牌,这些令牌随后被送入transformer。而后transformer应用注意力办法生成一系列输入令牌。
projector 最终将输入令牌标记从新连贯到特色图。
vision transformer模型的整体架构如下:
- 将图像拆分为补丁(固定大小)
- 展平图像块
- 从这些展平的图像块中创立低维线性嵌入
- 包含地位嵌入
- 将序列作为输出发送到transformer编码器
- 应用图像标签预训练 ViT 模型,而后在宽泛的数据集上进行训练
- 在图像分类的上游数据集进行微调
可视化注意力
ViT中最次要的就是注意力机制,所以可视化注意力就成为理解ViT的重要步骤,所以咱们这里介绍如何可视化ViT中的注意力
导入库
importos importtorch importnumpyasnp importmath fromfunctoolsimportpartial importtorch importtorch.nnasnn importipywidgetsaswidgets importio fromPILimportImage fromtorchvisionimporttransforms importmatplotlib.pyplotasplt importnumpyasnp fromtorchimportnn importwarnings warnings.filterwarnings("ignore")
创立一个VIT
deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return_no_grad_trunc_normal_(tensor, mean, std, a, b) def_no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf defnorm_cdf(x): # Computes standard normal cumulative distribution function return (1.+math.erf(x/math.sqrt(2.))) /2. defdrop_path(x, drop_prob: float=0., training: bool=False): ifdrop_prob==0.ornottraining: returnx keep_prob=1-drop_prob # work with diff dim tensors, not just 2D ConvNets shape= (x.shape[0],) + (1,) * (x.ndim-1) random_tensor=keep_prob+ \ torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output=x.div(keep_prob) *random_tensor returnoutput classDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def__init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob=drop_prob defforward(self, x): returndrop_path(x, self.drop_prob, self.training) classMlp(nn.Module): def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features=out_featuresorin_features hidden_features=hidden_featuresorin_features self.fc1=nn.Linear(in_features, hidden_features) self.act=act_layer() self.fc2=nn.Linear(hidden_features, out_features) self.drop=nn.Dropout(drop) defforward(self, x): x=self.fc1(x) x=self.act(x) x=self.drop(x) x=self.fc2(x) x=self.drop(x) returnx classAttention(nn.Module): def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads=num_heads head_dim=dim//num_heads self.scale=qk_scaleorhead_dim**-0.5 self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias) self.attn_drop=nn.Dropout(attn_drop) self.proj=nn.Linear(dim, dim) self.proj_drop=nn.Dropout(proj_drop) defforward(self, x): B, N, C=x.shape qkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C// self.num_heads).permute(2, 0, 3, 1, 4) q, k, v=qkv[0], qkv[1], qkv[2] attn= (q@k.transpose(-2, -1)) *self.scale attn=attn.softmax(dim=-1) attn=self.attn_drop(attn) x= (attn@v).transpose(1, 2).reshape(B, N, C) x=self.proj(x) x=self.proj_drop(x) returnx, attn classBlock(nn.Module): def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1=norm_layer(dim) self.attn=Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path=DropPath( drop_path) ifdrop_path>0.elsenn.Identity() self.norm2=norm_layer(dim) mlp_hidden_dim=int(dim*mlp_ratio) self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) defforward(self, x, return_attention=False): y, attn=self.attn(self.norm1(x)) ifreturn_attention: returnattn x=x+self.drop_path(y) x=x+self.drop_path(self.mlp(self.norm2(x))) returnx classPatchEmbed(nn.Module): """ Image to Patch Embedding """ def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches= (img_size//patch_size) * (img_size//patch_size) self.img_size=img_size self.patch_size=patch_size self.num_patches=num_patches self.proj=nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) defforward(self, x): B, C, H, W=x.shape x=self.proj(x).flatten(2).transpose(1, 2) returnx classVisionTransformer(nn.Module): """ Vision Transformer """ def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features=self.embed_dim=embed_dim self.patch_embed=PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches=self.patch_embed.num_patches self.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed=nn.Parameter( torch.zeros(1, num_patches+1, embed_dim)) self.pos_drop=nn.Dropout(p=drop_rate) # stochastic depth decay rule dpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)] self.blocks=nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) foriinrange(depth)]) self.norm=norm_layer(embed_dim) # Classifier head self.head=nn.Linear( embed_dim, num_classes) ifnum_classes>0elsenn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def_init_weights(self, m): ifisinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) ifisinstance(m, nn.Linear) andm.biasisnotNone: nn.init.constant_(m.bias, 0) elifisinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) definterpolate_pos_encoding(self, x, w, h): npatch=x.shape[1] -1 N=self.pos_embed.shape[1] -1 ifnpatch==Nandw==h: returnself.pos_embed class_pos_embed=self.pos_embed[:, 0] patch_pos_embed=self.pos_embed[:, 1:] dim=x.shape[-1] w0=w//self.patch_embed.patch_size h0=h//self.patch_embed.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0=w0+0.1, h0+0.1 patch_pos_embed=nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int( math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)), mode='bicubic', ) assertint( w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1] patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) defprepare_tokens(self, x): B, nc, w, h=x.shape x=self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens=self.cls_token.expand(B, -1, -1) x=torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x=x+self.interpolate_pos_encoding(x, w, h) returnself.pos_drop(x) defforward(self, x): x=self.prepare_tokens(x) forblkinself.blocks: x=blk(x) x=self.norm(x) returnx[:, 0] defget_last_selfattention(self, x): x=self.prepare_tokens(x) fori, blkinenumerate(self.blocks): ifi<len(self.blocks) -1: x=blk(x) else: # return attention of the last block returnblk(x, return_attention=True) defget_intermediate_layers(self, x, n=1): x=self.prepare_tokens(x) # we return the output tokens from the `n` last blocks output= [] fori, blkinenumerate(self.blocks): x=blk(x) iflen(self.blocks) -i<=n: output.append(self.norm(x)) returnoutput classVitGenerator(object): def__init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False): self.name_model=name_model self.patch_size=patch_size self.evaluate=evaluate self.device=device self.verbose=verbose self.model=self._getModel() self._initializeModel() ifnotrandom: self._loadPretrainedWeights() def_getModel(self): ifself.verbose: print( f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}") ifself.name_model=='vit_tiny': model=VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) elifself.name_model=='vit_small': model=VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) elifself.name_model=='vit_base': model=VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) else: raisef"No model found with {self.name_model}" returnmodel def_initializeModel(self): ifself.evaluate: forpinself.model.parameters(): p.requires_grad=False self.model.eval() self.model.to(self.device) def_loadPretrainedWeights(self): ifself.verbose: print("[INFO] Loading weights") url=None ifself.name_model=='vit_small'andself.patch_size==16: url="dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" elifself.name_model=='vit_small'andself.patch_size==8: url="dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" elifself.name_model=='vit_base'andself.patch_size==16: url="dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" elifself.name_model=='vit_base'andself.patch_size==8: url="dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" ifurlisNone: print( f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used") else: state_dict=torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/"+url) self.model.load_state_dict(state_dict, strict=True) defget_last_selfattention(self, img): returnself.model.get_last_selfattention(img.to(self.device)) def__call__(self, x): returnself.model(x)
创立可视化函数
deftransform(img, img_size): img=transforms.Resize(img_size)(img) img=transforms.ToTensor()(img) returnimg defvisualize_predict(model, img, img_size, patch_size, device): img_pre=transform(img, img_size) attention=visualize_attention(model, img_pre, patch_size, device) plot_attention(img, attention) defvisualize_attention(model, img, patch_size, device): # make the image divisible by the patch size w, h=img.shape[1] -img.shape[1] %patch_size, img.shape[2] - \ img.shape[2] %patch_size img=img[:, :w, :h].unsqueeze(0) w_featmap=img.shape[-2] //patch_size h_featmap=img.shape[-1] //patch_size attentions=model.get_last_selfattention(img.to(device)) nh=attentions.shape[1] # number of head # keep only the output patch attention attentions=attentions[0, :, 0, 1:].reshape(nh, -1) attentions=attentions.reshape(nh, w_featmap, h_featmap) attentions=nn.functional.interpolate(attentions.unsqueeze( 0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy() returnattentions defplot_attention(img, attention): n_heads=attention.shape[0] plt.figure(figsize=(10, 10)) text= ["Original Image", "Head Mean"] fori, figinenumerate([img, np.mean(attention, 0)]): plt.subplot(1, 2, i+1) plt.imshow(fig, cmap='inferno') plt.title(text[i]) plt.show() plt.figure(figsize=(10, 10)) foriinrange(n_heads): plt.subplot(n_heads//3, 3, i+1) plt.imshow(attention[i], cmap='inferno') plt.title(f"Head n: {i+1}") plt.tight_layout() plt.show() classLoader(object): def__init__(self): self.uploader=widgets.FileUpload(accept='image/*', multiple=False) self._start() def_start(self): display(self.uploader) defgetLastImage(self): try: foruploaded_filenameinself.uploader.value: uploaded_filename=uploaded_filename img=Image.open(io.BytesIO( bytes(self.uploader.value[uploaded_filename]['content']))) returnimg except: returnNone defsaveImage(self, path): withopen(path, 'wb') asoutput_file: foruploaded_filenameinself.uploader.value: content=self.uploader.value[uploaded_filename]['content'] output_file.write(content)
对一个图像的注意力进行可视化
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if device.type == "cuda": torch.cuda.set_device(1) name_model = 'vit_small' patch_size = 8 model = VitGenerator(name_model, patch_size, device, evaluate=True, random=False, verbose=True) # Visualizing Dog Image path = '/content/corgi_image.jpg' img = Image.open(path) factor_reduce = 2 img_size = tuple(np.array(img.size[::-1]) // factor_reduce) visualize_predict(model, img, img_size, patch_size, device)
本文代码
https://avoid.overfit.cn/post/4c0e8cb7959641eb9b92c1d5a3c7161c
作者:Aryan Jadon