商业倒退与职能技术部-体验保障研发组 康睿 姚再毅 李振 刘斌 王北永
阐明:以下全副均基于eslaticsearch 8.1 版本
一.索引的定义
官网文档地址:https://www.elastic.co/guide/...
索引的全局认知
ElasticSearch | Mysql |
---|---|
Index | Table |
Type废除 | Table废除 |
Document | Row |
Field | Column |
Mapping | Schema |
Everything is indexed | Index |
Query DSL | SQL |
GET http://... | select * from |
POST http://... | update table set ... |
Aggregations | group by\sum\sum |
cardinality | 去重 distinct |
reindex | 数据迁徙 |
索引的定义
定义: 雷同文档构造(Mapping)文档的联合 由惟一索引名称标定 一个集群中有多个索引 不同的索引代表不同的业务类型数据 注意事项: 索引名称不反对大写 索引名称最大反对255个字符长度 字段的名称,反对大写,不过倡议全副对立小写
索引的创立
编辑切换为居中
增加图片正文,不超过 140 字(可选)
index-settings 参数解析
官网文档地址:https://www.elastic.co/guide/...
留神: 动态参数索引创立后,不再能够批改,动静参数能够批改 思考: 一、为什么主分片创立后不可批改? A document is routed to a particular shard in an index using the following formula: <shard_num = hash(_routing) % num_primary_shards> the defalue value userd for _routing is the document`s _id es中写入数据,是根据上述的公式计算文档应该存储在哪个分片中,后续的文档读取也是依据这个公式,一旦分片数扭转,数据也就找不到了 简略了解 依据ID做Hash 而后再 除以 主分片数 取余,被除数扭转,后果就不一样了 二、如果业务层面依据数据状况,的确须要扩大主分片数,那怎么办? reindex 迁徙数据到另外一个索引 https://www.elastic.co/guide/...
编辑切换为居中
增加图片正文,不超过 140 字(可选)
索引的基本操作
编辑切换为居中
增加图片正文,不超过 140 字(可选)
二.Mapping-Param之dynamic
官网文档地址:https://www.elastic.co/guide/...
外围性能
自动检测字段类型后增加字段 也就是哪怕你没有在es的mapping中定义该字段,es也会动静的帮你检测字段类型
初识dynamic
// 删除test01索引,保障这个索引当初是洁净的DELETE test01// 不定义mapping,间接一条插入数据试试看,POST test01/_doc/1{ "name":"kangrui10"}// 而后咱们查看test01该索引的mapping构造 看看name这个字段被定义成了什么类型// 由此能够看出,name一级为text类型,二级定义为keyword,但其实这并不是咱们想要的后果,// 咱们业务查问中name字段并不会被分词查问,个别都是全匹配(and name = xxx)// 以下的这种后果,咱们想要实现全匹配 就须要 name.keyword = xxx 反而麻烦GET test01/_mapping{ "test01" : { "mappings" : { "properties" : { "name" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } } } } }}
dynamic的可选值
可选值 | 阐明 | 解释 |
---|---|---|
true | New fields are added to the mapping (default). | 创立mapping时,如果不指定dynamic的值,默认true,即如果你的字段没有收到指定类型,就会es帮你动静匹配字段类型 |
false | New fields are ignored. These fields will not be indexed or searchable, but will still appear in the _source field of returned hits. These fields will not be added to the mapping, and new fields must be added explicitly. | 若设置为false,如果你的字段没有在es的mapping中创立,那么新的字段,一样能够写入,然而不能被查问,mapping中也不会有这个字段,也就是被写入的字段,不会被创立索引 |
strict | If new fields are detected, an exception is thrown and the document is rejected. New fields must be explicitly added to the mapping. | 若设置为strict,如果新的字段,没有在mapping中创立字段,增加会间接报错,生产环境举荐,更加谨严。示例如下,如要新增字段,就必须手动的新增字段 |
动静映射的弊病
- 字段匹配绝对精确,但不肯定是用户冀望的
- 比方当初有一个text字段,es只会给你设置为默认的standard分词器,但咱们个别须要的是ik中文分词器
- 占用多余的存储空间
- string类型匹配为text和keyword两种类型,意味着会占用更多的存储空间
- mapping爆炸
- 如果不小心写错了查问语句,get用成了put误操作,就会谬误创立很多字段
三.Mapping-Param之doc_values
官网文档地址:https://www.elastic.co/guide/...
外围性能
DocValue其实是Lucene在构建倒排索引时,会额定建设一个有序的正排索引(基于document => field value的映射列表) DocValue实质上是一个序列化的 列式存储,这个构造十分实用于聚合(aggregations)、排序(Sorting)、脚本(scripts access to field)等操作。而且,这种存储形式也十分便于压缩,特地是数字类型。这样能够缩小磁盘空间并且进步访问速度。 简直所有字段类型都反对DocValue,除了text和annotated_text字段。
何为正排索引
正排索引其实就是相似于数据库表,通过id和数据进行关联,通过搜寻文档id,来获取对应的数据
doc_values可选值
- true:默认值,默认开启
- false:需手动指定,设置为false后,sort、aggregate、access the field from script将会无奈应用,但会节俭磁盘空间
真题演练
// 创立一个索引,test03,字段满足以下条件// 1. speaker: keyword// 2. line_id: keyword and not aggregateable// 3. speech_number: integerPUT test03{ "mappings": { "properties": { "speaker": { "type": "keyword" }, "line_id":{ "type": "keyword", "doc_values": false }, "speech_number":{ "type": "integer" } } }}
四.分词器analyzers
ik中文分词器装置
https://github.com/medcl/elas...
何为倒排索引
编辑切换为居中
增加图片正文,不超过 140 字(可选)
数据索引化的过程
编辑切换为居中
增加图片正文,不超过 140 字(可选)
分词器的分类
官网地址: https://www.elastic.co/guide/...
编辑切换为居中
增加图片正文,不超过 140 字(可选)
五.自定义分词
自定义分词器三段论
1.Character filters 字符过滤
官网文档地址:https://www.elastic.co/guide/... 可配置0个或多个
HTML Strip Character Filter:用处:删除HTML元素,如 ,并解 码HTML实体,如&amp
Mapping Character Filter:用处:替换指定字符
Pattern Replace Character Filter:用处:基于正则表达式替换指定字符
2.Tokenizer 文本切为分词
官网文档地址:https://www.elastic.co/guide/... 只能配置一个 用分词器对文本进行分词
3.Token filters 分词后再过滤
官网文档地址:https://www.elastic.co/guide/... 可配置0个或多个 分词后再加工,比方转小写、删除某些非凡的停用词、减少同义词等
真题演练
有一个文档,内容相似 dag & cat, 要求索引这个文档,并且应用match_parase_query, 查问dag & cat 或者 dag and cat,都可能查到 题目剖析: 1.何为match_parase_query:match_phrase 会将检索关键词分词。match_phrase的分词后果必须在被检索字段的分词中都蕴含,而且程序必须雷同,而且默认必须都是间断的。 2.要实现 & 和 and 查问后果要等价,那么就须要自定义分词器来实现了,定制化的需要 3.如何自定义一个分词器:https://www.elastic.co/guide/...
解法1
# 新建索引PUT /test01{ "settings": { "analysis": { "analyzer": { "my_analyzer": { "char_filter": [ "my_mappings_char_filter" ], "tokenizer": "standard", } }, "char_filter": { "my_mappings_char_filter": { "type": "mapping", "mappings": [ "& => and" ] } } } }, "mappings": { "properties": { "content":{ "type": "text", "analyzer": "my_analyzer" } } }}// 阐明// 三段论之Character filters,应用char_filter进行文本替换// 三段论之Token filters,应用默认分词器// 三段论之Token filters,未设定// 字段content 应用自定义分词器my_analyzer# 填充测试数据PUT test01/_bulk{"index":{"_id":1}}{"content":"doc & cat"}{"index":{"_id":2}}{"content":"doc and cat"}# 执行测试,doc & cat || oc and cat 后果输入都为两条POST test01/_search{ "query": { "bool": { "must": [ { "match_phrase": { "content": "doc & cat" } } ] } }}
解法2
# 解题思路,将& 和 and 设定为同义词,应用Token filters# 创立索引PUT /test02{ "settings": { "analysis": { "analyzer": { "my_synonym_analyzer": { "tokenizer": "whitespace", "filter": [ "my_synonym" ] } }, "filter": { "my_synonym": { "type": "synonym", "lenient": true, "synonyms": [ "& => and" ] } } } }, "mappings": { "properties": { "content": { "type": "text", "analyzer": "my_synonym_analyzer" } } }}// 阐明// 三段论之Character filters,未设定// 三段论之Token filters,应用whitespace空格分词器,为什么不必默认分词器?因为默认分词器会把&分词后剔除了,就无奈在去做分词后的过滤操作了// 三段论之Token filters,应用synony分词后过滤器,对&和and做同义词// 字段content 应用自定义分词器my_synonym_analyzer# 填充测试数据PUT test02/_bulk{"index":{"_id":1}}{"content":"doc & cat"}{"index":{"_id":2}}{"content":"doc and cat"}# 执行测试POST test02/_search{ "query": { "bool": { "must": [ { "match_phrase": { "content": "doc & cat" } } ] } }}
六.multi-fields
官网文档地址:https://www.elastic.co/guide/...
// 单字段多类型,比方一个字段我想设置两种分词器PUT my-index-000001{ "mappings": { "properties": { "city": { "type": "text", "analyzer":"standard", "fields": { "fieldText": { "type": "text", "analyzer":"ik_smart", } } } } }}
七.runtime_field 运行时字段
官网文档地址:https://www.elastic.co/guide/...
产生背景
如果业务中须要依据某两个数字类型字段的差值来排序,也就是我须要一个不存在的字段, 那么此时应该怎么办? 当然你能够刷数,新增一个差值后果字段来实现,如果此时不容许你刷数新增字段怎么办?
解决方案
编辑切换为居中
增加图片正文,不超过 140 字(可选)
利用场景
- 在不从新建设索引的状况下,向现有文档新增字段
- 在不理解数据结构的状况下解决数据
- 在查问时笼罩从原索引字段返回的值
- 为特定用处定义字段而不批改底层架构
性能个性
- Lucene齐全无感知,因没有被索引化,没有doc_values
- 不反对评分,因为没有倒排索引
- 突破传统先定义后应用的形式
- 能阻止mapping爆炸
- 减少了API的灵活性
- 留神,会使得搜寻变慢
理论应用
- 运行时检索指定,即检索环节可应用(也就是哪怕mapping中没有这个字段,我也能够查问)
- 动静或动态mapping指定,即mapping环节可应用(也就是在mapping中增加一个运行时的字段)
真题演练1
# 假设有以下索引和数据PUT test03{ "mappings": { "properties": { "emotion": { "type": "integer" } } }}POST test03/_bulk{"index":{"_id":1}}{"emotion":2}{"index":{"_id":2}}{"emotion":5}{"index":{"_id":3}}{"emotion":10}{"index":{"_id":4}}{"emotion":3}# 要求:emotion > 5, 返回emotion_falg = '1', # 要求:emotion < 5, 返回emotion_falg = '-1', # 要求:emotion = 5, 返回emotion_falg = '0',
解法1
检索时指定运行时字段: https://www.elastic.co/guide/... 该字段实质上是不存在的,所以须要检索时要加上 fields *
GET test03/_search{ "fields": [ "*" ], "runtime_mappings": { "emotion_falg": { "type": "keyword", "script": { "source": """ if(doc['emotion'].value>5)emit('1'); if(doc['emotion'].value<5)emit('-1'); if(doc['emotion'].value==5)emit('0'); """ } } }}
解法2
创立索引时指定运行时字段:https://www.elastic.co/guide/... 该形式反对通过运行时字段做检索
# 创立索引并指定运行时字段PUT test03_01{ "mappings": { "runtime": { "emotion_falg": { "type": "keyword", "script": { "source": """ if(doc['emotion'].value>5)emit('1'); if(doc['emotion'].value<5)emit('-1'); if(doc['emotion'].value==5)emit('0'); """ } } }, "properties": { "emotion": { "type": "integer" } } }}# 导入测试数据POST test03_01/_bulk{"index":{"_id":1}}{"emotion":2}{"index":{"_id":2}}{"emotion":5}{"index":{"_id":3}}{"emotion":10}{"index":{"_id":4}}{"emotion":3}# 查问测试GET test03_01/_search{ "fields": [ "*" ]}
真题演练2
# 有以下索引和数据PUT test04{ "mappings": { "properties": { "A":{ "type": "long" }, "B":{ "type": "long" } } }}PUT task04/_bulk{"index":{"_id":1}}{"A":100,"B":2}{"index":{"_id":2}}{"A":120,"B":2}{"index":{"_id":3}}{"A":120,"B":25}{"index":{"_id":4}}{"A":21,"B":25}# 需要:在task04索引里,创立一个runtime字段,其值是A-B,名称为A_B; 创立一个range聚合,分为三级:小于0,0-100,100以上;返回文档数// 应用知识点:// 1.检索时指定运行时字段: https://www.elastic.co/guide/en/elasticsearch/reference/8.1/runtime-search-request.html// 2.范畴聚合 https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-bucket-range-aggregation.html
解法
# 后果测试GET task04/_search{ "fields": [ "*" ], "size": 0, "runtime_mappings": { "A_B": { "type": "long", "script": { "source": """ emit(doc['A'].value - doc['B'].value); """ } } }, "aggs": { "price_ranges_A_B": { "range": { "field": "A_B", "ranges": [ { "to": 0 }, { "from": 0, "to": 100 }, { "from": 100 } ] } } }}
八.Search-highlighted
highlighted语法初识
官网文档地址:https://www.elastic.co/guide/...
编辑切换为居中
增加图片正文,不超过 140 字(可选)
九.Search-Order
Order语法初识
官网文档地址: https://www.elastic.co/guide/...
// 留神:text类型默认是不能排或聚合的,如果非要排序或聚合,须要开启fielddataGET /kibana_sample_data_ecommerce/_search{ "query": { "match": { "customer_last_name": "wood" } }, "highlight": { "number_of_fragments": 3, "fragment_size": 150, "fields": { "customer_last_name": { "pre_tags": [ "<em>" ], "post_tags": [ "</em>" ] } } }, "sort": [ { "currency": { "order": "desc" }, "_score": { "order": "asc" } } ]}
十.Search-Page
page语法初识
官网文档地址:https://www.elastic.co/guide/...
# 留神 from的起始值是 0 不是 1GET kibana_sample_data_ecommerce/_search{ "from": 5, "size": 20, "query": { "match": { "customer_last_name": "wood" } }}
真题演练1
# 题目In the spoken lines of the play, highlight the word Hamlet (int the text_entry field) startint the highlihnt with "#aaa#" and ending it with "#bbb#"return all of speech_number field lines in reverse order; '20' speech lines per page,starting from line '40'# highlight 解决 text_entry 字段 ; 关键词 Hamlet 高亮# page分页:from:40;size:20# speech_number:倒序POST test09/_search{ "from": 40, "size": 20, "query": { "bool": { "must": [ { "match": { "text_entry": "Hamlet" } } ] } }, "highlight": { "fields": { "text_entry": { "pre_tags": [ "#aaa#" ], "post_tags": [ "#bbb#" ] } } }, "sort": [ { "speech_number.keyword": { "order": "desc" } } ]}
十一.Search-AsyncSearch
官网文档地址:https://www.elastic.co/guide/...
发行版本
7.7.0
实用场景
容许用户在异步搜寻后果时能够检索,从而打消了仅在查问实现后才期待最终响应的状况
常用命令
- 执行异步检索
- POST /sales*/_async_search?size=0
- 查看异步检索
- GET /_async_search/id值
- 查看异步检索状态
- GET /_async_search/id值
- 删除、终止异步检索
- DELETE /_async_search/id值
异步查问后果阐明
返回值 | 含意 |
---|---|
id | 异步检索返回的惟一标识符 |
is_partial | 当查问不再运行时,批示再所有分片上搜寻是胜利还是失败。在执行查问时,is_partial=true |
is_running | 搜寻是否依然再执行 |
total | 将在多少分片上执行搜寻 |
successful | 有多少分片曾经胜利实现搜寻 |
十二.Aliases索引别名
官网文档地址:https://www.elastic.co/guide/...
Aliases的作用
在ES中,索引别名(index aliases)就像一个快捷方式或软连贯,能够指向一个或多个索引。别名带给咱们极大的灵活性,咱们能够应用索引别名实现以下性能:
- 在一个运行中的ES集群中无缝的切换一个索引到另一个索引上(无需停机)
- 分组多个索引,比方按月创立的索引,咱们能够通过别名结构出一个最近3个月的索引
- 查问一个索引外面的局部数据形成一个相似数据库的视图(views
假如没有别名,如何解决多索引的检索
形式1:POST index_01,index_02.index_03/_search 形式2:POST index*/search
创立别名的三种形式
- 创立索引的同时指定别名
# 指定test05的别名为 test05_aliasesPUT test05{ "mappings": { "properties": { "name":{ "type": "keyword" } } }, "aliases": { "test05_aliases": {} }}
- 应用索引模板的形式指定别名
PUT _index_template/template_1{ "index_patterns": ["te*", "bar*"], "template": { "settings": { "number_of_shards": 1 }, "mappings": { "_source": { "enabled": true }, "properties": { "host_name": { "type": "keyword" }, "created_at": { "type": "date", "format": "EEE MMM dd HH:mm:ss Z yyyy" } } }, "aliases": { "mydata": { } } }, "priority": 500, "composed_of": ["component_template1", "runtime_component_template"], "version": 3, "_meta": { "description": "my custom" }}
- 对已有的索引创立别名
POST _aliases{ "actions": [ { "add": { "index": "logs-nginx.access-prod", "alias": "logs" } } ]}
删除别名
POST _aliases{ "actions": [ { "remove": { "index": "logs-nginx.access-prod", "alias": "logs" } } ]}
真题演练1
# Define an index alias for 'accounts-row' called 'accounts-male': Apply a filter to only show the male account owners# 为'accounts-row'定义一个索引别名,称为'accounts-male':利用一个过滤器,只显示男性账户所有者POST _aliases{ "actions": [ { "add": { "index": "accounts-row", "alias": "accounts-male", "filter": { "bool": { "filter": [ { "term": { "gender.keyword": "male" } } ] } } } } ]}
十三.Search-template
官网文档地址:https://www.elastic.co/guide/...
性能特点
模板承受在运行时指定参数。搜寻模板存储在服务器端,能够在不更改客户端代码的状况下进行批改。
初识search-template
# 创立检索模板PUT _scripts/my-search-template{ "script": { "lang": "mustache", "source": { "query": { "match": { "{{query_key}}": "{{query_value}}" } }, "from": "{{from}}", "size": "{{size}}" } }}# 应用检索模板查问GET my-index/_search/template{ "id": "my-search-template", "params": { "query_key": "your filed", "query_value": "your filed value", "from": 0, "size": 10 }}
索引模板的操作
创立索引模板
PUT _scripts/my-search-template{ "script": { "lang": "mustache", "source": { "query": { "match": { "message": "{{query_string}}" } }, "from": "{{from}}", "size": "{{size}}" }, "params": { "query_string": "My query string" } }}
验证索引模板
POST _render/template{ "id": "my-search-template", "params": { "query_string": "hello world", "from": 20, "size": 10 }}
执行检索模板
GET my-index/_search/template{ "id": "my-search-template", "params": { "query_string": "hello world", "from": 0, "size": 10 }}
获取全副检索模板
GET _cluster/state/metadata?pretty&filter_path=metadata.stored_scripts
删除检索模板
DELETE _scripts/my-search-templateath=metadata.stored_scripts
十四.Search-dsl 简略检索
官网文档地址:https://www.elastic.co/guide/...
检索选型
编辑切换为居中
增加图片正文,不超过 140 字(可选)
检索分类
编辑切换为居中
增加图片正文,不超过 140 字(可选)
自定义评分
如何自定义评分
编辑切换为居中
增加图片正文,不超过 140 字(可选)
1.index Boost索引层面批改相关性
// 一批数据里,有不同的标签,数据结构统一,不同的标签存储到不同的索引(A、B、C),最初要严格依照标签来分类展现的话,用什么查问比拟好?// 要求:先展现A类,而后B类,而后C类# 测试数据如下put /index_a_123/_doc/1{ "title":"this is index_a..."}put /index_b_123/_doc/1{ "title":"this is index_b..."}put /index_c_123/_doc/1{ "title":"this is index_c..."}# 一般不指定的查问形式,该查问形式下,返回的三条后果数据评分是雷同的POST index_*_123/_search{ "query": { "bool": { "must": [ { "match": { "title": "this" } } ] } }}官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-search.htmlindices_boost# 也就是索引层面晋升权重POST index_*_123/_search{ "indices_boost": [ { "index_a_123": 10 }, { "index_b_123": 5 }, { "index_c_123": 1 } ], "query": { "bool": { "must": [ { "match": { "title": "this" } } ] } }}
2.boosting 批改文档相关性
某索引index_a有多个字段, 要求实现如下的查问:1)针对字段title,满足'ssas'或者'sasa’。2)针对字段tags(数组字段),如果tags字段蕴含'pingpang',则晋升评分。要求:写出实现的DSL?# 测试数据如下put index_a/_bulk{"index":{"_id":1}}{"title":"ssas","tags":"basketball"}{"index":{"_id":2}}{"title":"sasa","tags":"pingpang; football"}# 解法1POST index_a/_search{ "query": { "bool": { "must": [ { "bool": { "should": [ { "match": { "title": "ssas" } }, { "match": { "title": "sasa" } } ] } } ], "should": [ { "match": { "tags": { "query": "pingpang", "boost": 1 } } } ] } }}# 解法2// https://www.elastic.co/guide/en/elasticsearch/reference/8.1/query-dsl-function-score-query.htmlPOST index_a/_search{ "query": { "bool": { "should": [ { "function_score": { "query": { "match": { "tags": { "query": "pingpang" } } }, "boost": 1 } } ], "must": [ { "bool": { "should": [ { "match": { "title": "ssas" } }, { "match": { "title": "sasa" } } ] } } ] } }}
3.negative_boost升高相关性
对于某些后果不称心,但又不想通过 must_not 排除掉,能够思考能够思考boosting query的negative_boost。即:升高评分negative_boost(Required, float) Floating point number between 0 and 1.0 used to decrease the relevance scores of documents matching the negative query.官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/query-dsl-boosting-query.htmlPOST index_a/_search{ "query": { "boosting": { "positive": { "term": { "tags": "football" } }, "negative": { "term": { "tags": "pingpang" } }, "negative_boost": 0.5 } }}
4.function_score 自定义评分
如何同时依据 销量和浏览人数进行相关度晋升?问题形容:针对商品,例如有想要有一个晋升相关度的计算,同时针对销量和浏览人数?例如oldScore*(销量+浏览人数)************************** 商品 销量 浏览人数 A 10 10 B 20 20C 30 30************************** # 示例数据如下 put goods_index/_bulk{"index":{"_id":1}}{"name":"A","sales_count":10,"view_count":10}{"index":{"_id":2}}{"name":"B","sales_count":20,"view_count":20}{"index":{"_id":3}}{"name":"C","sales_count":30,"view_count":30}官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/query-dsl-function-score-query.html知识点:script_scorePOST goods_index/_search{ "query": { "function_score": { "query": { "match_all": {} }, "script_score": { "script": { "source": "_score * (doc['sales_count'].value+doc['view_count'].value)" } } } }}
十五.Search-del Bool简单检索
官网文档地址:https://www.elastic.co/guide/...
根本语法
编辑切换为居中
增加图片正文,不超过 140 字(可选)
真题演练
写一个查问,要求某个关键字再文档的四个字段中至多蕴含两个以上性能点:bool 查问,should / minimum_should_match 1.检索的bool查问 2.细节点 minimum_should_match留神:minimum_should_match 当有其余子句的时候,默认值为0,当没有其余子句的时候默认值为1POST test_index/_search{ "query": { "bool": { "should": [ { "match": { "filed1": "kr" } }, { "match": { "filed2": "kr" } }, { "match": { "filed3": "kr" } }, { "match": { "filed4": "kr" } } ], "minimum_should_match": 2 } }}
十六.Search-Aggregations
官网文档地址:https://www.elastic.co/guide/...
聚合分类
编辑切换为居中
增加图片正文,不超过 140 字(可选)
编辑
增加图片正文,不超过 140 字(可选)
分桶聚合(bucket)
terms
官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-bucket-terms-aggregation.html# 依照作者统计文档数POST bilili_elasticsearch/_search{ "size": 0, "aggs": { "agg_user": { "terms": { "field": "user", "size": 1 } } }}
date_histogram
官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-bucket-datehistogram-aggregation.html# 依照up_time 按月进行统计POST bilili_elasticsearch/_search{ "size": 0, "aggs": { "agg_up_time": { "date_histogram": { "field": "up_time", "calendar_interval": "month" } } }}
指标聚合 (metrics)
Max
官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-metrics-max-aggregation.html# 获取up_time最大的POST bilili_elasticsearch/_search{ "size": 0, "aggs": { "agg_max_up_time": { "max": { "field": "up_time" } } }}
Top_hits
官网文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-metrics-top-hits-aggregation.html# 依据user聚合只取一个聚合后果,并且获取命中数据的详情前3条,并依照指定字段排序POST bilili_elasticsearch/_search{ "size": 0, "aggs": { "terms_agg_user": { "terms": { "field": "user", "size": 1 }, "aggs": { "top_user_hits": { "top_hits": { "_source": { "includes": [ "video_time", "title", "see", "user", "up_time" ] }, "sort": [ { "see":{ "order": "desc" } } ], "size": 3 } } } } }}// 返回后果如下{ "took" : 91, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1000, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "terms_agg_user" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 975, "buckets" : [ { "key" : "Elastic搜寻", "doc_count" : 25, "top_user_hits" : { "hits" : { "total" : { "value" : 25, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "bilili_elasticsearch", "_id" : "5ccCVoQBUyqsIDX6wIcm", "_score" : null, "_source" : { "video_time" : "03:45", "see" : "92", "up_time" : "2021-03-19", "title" : "Elastic 社区大会2021: 用加 Gatling 进行Elasticsearch的负载测试,寓教于乐。", "user" : "Elastic搜寻" }, "sort" : [ "92" ] }, { "_index" : "bilili_elasticsearch", "_id" : "8scCVoQBUyqsIDX6wIgn", "_score" : null, "_source" : { "video_time" : "10:18", "see" : "79", "up_time" : "2020-10-20", "title" : "为Elasticsearch启动htpps拜访", "user" : "Elastic搜寻" }, "sort" : [ "79" ] }, { "_index" : "bilili_elasticsearch", "_id" : "7scCVoQBUyqsIDX6wIcm", "_score" : null, "_source" : { "video_time" : "04:41", "see" : "71", "up_time" : "2021-03-19", "title" : "Elastic 社区大会2021: Elasticsearch作为一个天文空间的数据库", "user" : "Elastic搜寻" }, "sort" : [ "71" ] } ] } } } ] } }}
子聚合 (Pipeline)
Pipeline:基于聚合的聚合 官网文档地址:https://www.elastic.co/guide/...
bucket_selector
官网文档地址:https://www.elastic.co/guide/...
# 依据order_date按月分组,并且求销售总额大于1000POST kibana_sample_data_ecommerce/_search{ "size": 0, "aggs": { "date_his_aggs": { "date_histogram": { "field": "order_date", "calendar_interval": "month" }, "aggs": { "sum_aggs": { "sum": { "field": "total_unique_products" } }, "sales_bucket_filter": { "bucket_selector": { "buckets_path": { "totalSales": "sum_aggs" }, "script": "params.totalSales > 1000" } } } } }}
真题演练
earthquakes索引中蕴含了过来30个月的地震信息,请通过一句查问,获取以下信息l 过来30个月,每个月的均匀 magl 过来30个月里,均匀mag最高的一个月及其均匀magl 搜寻不能返回任何文档 max_bucket 官网地址:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/search-aggregations-pipeline-max-bucket-aggregation.htmlPOST earthquakes/_search{ "size": 0, "query": { "range": { "time": { "gte": "now-30M/d", "lte": "now" } } }, "aggs": { "agg_time_his": { "date_histogram": { "field": "time", "calendar_interval": "month" }, "aggs": { "avg_aggs": { "avg": { "field": "mag" } } } }, "max_mag_sales": { "max_bucket": { "buckets_path": "agg_time_his>avg_aggs" } } }}